NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DESIGN OF A SERIAL COMMUNICATION
PROTOCOL AND BUS INTERFACE CHIP FOR
TACTILE COMMUNICATIONS
by
Jeffrey P. Link

March 1999

Thesis Advisors: Douglas J. Fouts
‘ Jon T. Butler

Approved for public release; distribution is unlimited.

980 £¢70060601

Form Approved OMB

REPORT DOCUMENTATION PAGE No. 0704-0188.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1999 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DESIGN OF A SERIAL COMMUNICATION PROTOCOL AND
BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

6. AUTHOR()
Jeffrey P. Link

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)
Tactile communication requires rapid data transfer along a common bus. The developed
communication protocol and application-specific interface chip enable precise control of multiple
tactile transmitters (tactors) to convey information to military users. This extrapolation of the Tactile
Situation Awareness System developed by the Naval Aerospace Medical Research Laboratory uses a
serial data bus and individual interface chips to communicate commands with a minimum number of
conductors. This thesis develops the communication protocol and the design of the Tactor Interface
Chip (TIC). This work also includes a computer-driven tactile array controller and Paralle] Port Data
Modulator for TIC testing and demonstration.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Electronics, Tactile, Interface, Tactor, TSAS, Serial Communications 316

16. PRICE CODE

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18, 298-102

il

Approved for public release; distribution is unlimited.

DESIGN OF A SERIAL COMMUNICATION PROTOCOL AND
BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

Jeffrey P. Link

Lieutenant Commander, United States Navy
B.S., Iowa State University, 1985
M.A., Webster University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author O//% /. /&

~ Te ffrey P. Link

Approved by: M / %féﬁ’

Douglas J. Fouts, Thesis Advisor

A %;‘ %Second Reader

oy

- YV I B Knorr Thairman
Department of Electrical and Computer Engineering

iii

v

ABSTRACT

Tactile communication requires rapid data transfer along a common bus. The
developed communication protocol and application-specific interface chip enable precise
control of multiple tactile transmitters (tactors) to convey information to military users. This
extrapolation of the Tactile Situation Awareness System developed by the Naval Aerospace
Medical Research Laboratory uses a serial data bus and individual interface chips to
communicate commands with a minimum number of conductors. This thesis develops the
communication protocol and the design of the Tactor Interface Chip (TIC). This work also
includes a computer-driven tactile array controller and Parallel Port Data Modulator for TIC

testing and demonstration.

vi

TABLE OF CONTENTS

L. INTRODUC TIONoouoteieireirineeeeenenenietssseeescssessasssssasassessssssssssmsssssssssnssssssssssssssassssssssesss 1
A. COMMUNICATING THROUGH TOUCH ...ttt 2
B. TACTILE SITUATION AWARENESS SYSTEM BY NAMRLccceeennees 3
C. DEVELOPING INTELLIGENT TACTORSccocovmmrnrenninsnnsssesssseaens 4
D. THESIS OUTLINEcuototieteterereetereentsiecteessesseisssssssssssssssessesessssssesessssssssssses 5

II. COMMUNICATION PROTOCOLooc.oooeversseressesssssssssesssssssssssssssssssssssessssssssssnees
A. DESIGN REQUIREMENTScooiiriniiiiinnncensetnese s s sessssssseas 7

1. Required OULPULc.coviemrieririiieircncriniien et nssssesesesesssncacses 7
2. System CONfIGUrAtIONceceercersremcmisiiinirsnesesssss s sessssssssasssssessessocs 8
B. CONTROL STRUCTURE........ccootceermrrirereeeeresiissisisisesessaesesess s ssssssssssassessssesscas 9
L. AQAIESS oottt estsssss s b s s n s s s s neesaa 9
2. PUISE ShAPE......ouiiririeirirrcrccciii ettt 9
C. COMMAND FORMATooiereerereremsrsecststesessesesssisssssssssassssssessasssssasssssassssacas 10
1. Address Command WOrdc..ccccoeecivinmiinmneninrenninisseeissnenneas R 10
2. Pulse Width WOTd........coveeveenenrcecreeniennereecinisistsecacassess s sssssssssssssssses 11
3. Repetition Period WOrd ..ot sescsesnsasinenes 12
D. BUS ARCHITECTURAL CONSIDERATIONScooiiirereriinreeiessensieisinnnes 12
1. Command Promulgation Speed..........ccceuevirnreinniriniinienininsnennsnsieienenees 13
2. Paralle]l BUS.....cccovvovurreererreeieceeenssereeneiesesessacssnsssssrsessssssssassssssssssssases 13
3. Serial BUS....coiouieeriruieeiieetecretensriniestsaisstee et een s st sa s e sns e sneas 14
E. ARCHITECTURAL DECISION AND JUSTIFICATIONccoroeneemrecuccnncnces 15
F. TRANSMISSION PACKET FORMATcccconimirinninnnrensreinsensssssasssccnenns 15
G. PHYSICAL CONSTRUCTION REQUIREMENTS.........c.ccooviieimmmninieireccnnenne 16
1. TIC and Tactor POWET........ccccceemevirneiieeninncnininierenteiesessessenesassassesssnnsns 17
2. Command Data and Timing Signalsccccevermereerenreesieninneniseeeisienences 17

vii

III. TACTOR INTERFACE CHIP SPECIFICATION AND DESIGN........cccoconirinarnnnnen. 19

A. DESIGN GOALS ...ttt sasses s ssssas s ebs s b s ssenes 19
B. OPERATIONAL CONCEPTcccceoeiermmrmrrrrernnce. s 20
1. Serial Data RECEIVET........cceireeerirercrcetetieitiesessissse e nensae s nssesssessens 21
2. Command Decoder and Controller 21
3. Tactor POWer CONLrOILETcveeecuceirierccciniicniieteisisnarnsse s esesessnaenas 21
C. OPERATIONAL DESCRIPTIONcociciiieinrreniriirinnieniisnsnssssnsssnsesssssessnsans 22
D. FUNCTIONAL MODULE DESIGN......ccoeeeieiimiinnninienerssisniesssesessssssessenss 23
1. Serial Data Recelver23
2. Command Decoder and Controllerccocveveriienenneecnieeeseessneenne 24
3. Tactor Power Controllercoeveeerunrvrrennereseeerensnens e ssenenesesne 26
E. VERILOG® DESIGN VERIFICATIONcooooemreeneeemenmrmeisecsessserssecssenssesess 27
1. Twelve-Bit Input Shift REZISIETovvimiuriieiereieeececccecans 28
2. Eight-Bit Data LatCh.......ceemieieieieei et 28
3. Input Stream Validity CheCKcoeiiriereieiieirenenieieicccncccnnnenens 29
4. Command Sequence Controller e st ra st 31
5. Address COMPATALOTccueucururerisiserimsireserssesssssssssssssssssssssssssssssesnsssssssss 34
6. AdAress REFETENCEcvueveveeeerrieiriiiinenciniaenesetsis e ssssssssssaesessses 34
7. Pulse Width Re@ISter........cccvmrvireriveiiniirineeeineteeessessssene e eerereraeneaene 35
8. Repetition Period REZISIETcorvevrerrieeiesnnnissniesnsteisecnicsssssasasincnes 36
9. Power CONtrol LOZIC...ccvueurceueriririiiisciresirneiesessessssesenessenesssssasssnsssencnsnes 37
10. POWET OSCHIALOLcereeeerereiereieeetsaereecsssssssssesnssasssesessassssssssassassssssssacs 38
11. Pulse Width DOWN COUNLET......cc.coceeerierirmninrinierenienrsreneesesssesssnssasessenns 39
12. Repetition Period DOWN COUNLETccceveieriereenececnneensensisacinsissinsannes 40
13. ClOCK DIVIAETveeeieeeeeeeeniecreecerceniesiisnesesnssse et a s s se e sessesensae 41
F. STRUCTURAL COMPONENT DESIGN........ccecovviirtnrirrnnrsnessnieescsesienns 42
1. Structural Circuit OPtIMUZALION «.....cvuvurerirereeeiereseresesissesissasssnseescsseens 43
2. Twelve-Bit Input Shift REGIStETcoueivirimreieimreceeetrcseienccenenes 44
3. Bight-Bit Data LAtChcooeererrereeeeeessesmssesessessessseneesmsssssssssssssrsssssssnseeees 44

4. Tnput Stream Vality CHECKoccoouevvesreressssmssssesssseessssesesssssssseesssseseee 44

5. Command Sequence COntrollerooviivrrmeiereeennieresesenecsessnnensenns 45

6. Address COMPATALOTcccreuemrmeriiissrrnierssresessssessnssssssssssssssssessasussssscssns 46

7. Address REfEIENCEocvuerverereeeenceccieininiensiniststeresesssness e ssssstsnesasesasssene 46

8. Pulse Width REZISIET........cccrverrrermremmecescrcesensscresssrascsssssnsenssrsessesssnsessesses 40

9. Repetition Period REGISLETvvuivimrmiermerircieenrceents e sencccnnes 47

10. Power Control LOZIC......coevceeremeeisesimnirisinieresisinessssiesssssssssssssssssesesesssenes 47

11. POWET OSCILALOLcoveveeemecerecriereeiereneieisienereresssss s s st ssssssssanenenencs 47

12. Pulse Width DOWN COUNLET......ccocererriinimiinirnirnetensesssneesssssesesnssneneone 47

13. Repetition Period Down COUNLETccvrererriermreersnnrnensiseseteeeesinennnes 48

14. CIOCK DIVIAET ...vveeeerererrereeeencneneeresisinisesessnsssssssssssesssssesasensansssnsssssases 49

G. ADVANCED DESIGN FEATURES.......coiririnnnssnnnnsnsisceseeeneenenes 49
1. Multiple Command Packet AdAressingcoevereeuesrcscesensnscsisnsniscisinnn. 49

2. All-Call AQAIESS....cceverrreireereeereeecntesiciistesssssese e se s ssessssesssasaeses 50

3. Dual ReSet CIICUIL......covevereerieeererereeiisteseseirsresisssesnssnsssssenssssesssseseessseses 50

4. Selectable Oscillator FIEQUENCYcoiiviieuriricueiinsneneistssesssssnsasssneeenanes 50

5. Selectable AdAIESScccoeevireeneecreeriicrseisiiisiessensrere et ssssssessesssssssesnes 50

H. ANIMATION OF TACTOR INTERFACE CHIP OPERATIONS. 51
1. TIC Visual RePresentationcocvcemrmieesssrsnesesesssssssssnessseessscsssssansnes 51

2. Animation Color SChEMEcoucvviiicimrireieiienreeeneesen s 52

IV. TACTOR INTERFACE CHIP VLSI IMPLEMENTATION ..ot 55
A. COMPETING VLSI DESIGN CONSTRAINTS ...t sseresnsessannns 55
e SHZE ettt et sttt s e e b e e ene 55

2 POWET c..eeeeeeereceeierencee et rsc st b b ssara s s s e s saesn e s et n s et s e s sasacocs 55

3. SPELA..c ittt s 56

B. CMOS FET TRANSISTOR SIZINGcccoeerreimemrierersicsismssssssesesessssensasssssssses 56
1. Determining PFET Size From NEET SiZeovvvceeeuummmrerereecessesesssnneesne 56

2. Basic ReSponse TIMNEccocccvimiririmnineesnseisssisessssssssssnsssssiccsssssccacens 57

B. LOGIC ELEMENT DESIGNcoiiitrinmcniiniininninnieieseseis s sesssssssssssssssssssssssseacs 59

C. COMBINED LOGIC COMPONENT CONSTRUCTIONccooeirireeacannnas 59

E. MODULE ASSEMBLYcoovooeoosssreensseesssseerssssssessssssssssssesssssssassssssssisses 60
F. INPUT AND OUTPUT CONSIDERATIONScccccocomverrerseneresseneesessssssssenes 60
G. COMPLETE TACTOR INTERFACE CHIPcooooeeersmeersessesesessssssessceees 61
H. COMPREHENSIVE SYSTEM TESTING.......sccccvssersresesssssessesesesscsessonse 63
V. PARALLEL PORT DATA MODULATOR w.coccvtvrsrmmrirrssrsrssssssss 65
A. CREATING A SERIAL COMMAND STREAMooccccenmmverrrssasnrsessceesiescnee 65
B. PARALLEL PORT INTERFACING AND CONTROL ...ccooccrrsscverssmrerssnserne 66
C. MODULATOR DESIGN SPECIFICS......ooccrssererseserressnsessseseessn R 68
D. CREATING A PRINTED CIRCUIT BOARD LAYOUTcocovsurercessenressees 69
E. PRINTED CIRCUIT BOARD MANUFACTURINGccccvssisrrrrrrre R 72
F. PRINTED CIRCUIT BOARD ASSEMBLY ...oocccoruersimrsmrsivrrsesssesmsessssos 73
G. SOFTWARE TO DRIVE THE COMMAND MODULATORccoccoccrrierrr 74
H. COMMAND MODULATOR TESTING w....ccoossevrrrsmeersessssssessssssssssmsesssseess 75
1. MODIFICATIONS TO THE MODULATOR DESIGN.......ococcrrsereessscmeesieerc 76
VI. TACTOR INTERFACE CHIP TESTING ...cocccrevreeerresserssssssesssssessssssssmsssssssesssees 77
A. VLSI CHIP RECEIPT FROM FABRICATIONccovscrrrsseresecssnneeerssseesssreres 77
B. VISUAL INSPECTIONoooccoomssieersseessssssssssssssssesssessssssessessssssssmersessnees 78
C. OPERATIONAL CHECK USING COMMAND MODULATOR...........ee. T8
D. COMPLETE SYSTEM RESIMULATION......occcccconovvrmsenerssesssesssssesssissssserc 79
E. SCANNING ELECTRON MICROSCOPE INSPECTION.........cccccresrrrrsnrers 79
F. CHARGED ELECTRON IMAGING.. sttt 81
G. FURTHER TESTING .ooveossreeeeeeeeessssessssssssssssessssssssss s sessesesssssssess s 82

VII. REVISIONS TO THE COMMUNICATION PROTOCOL.........oooemerernrinirinierinienenn 83

A. EVALUATION OF REGISTER COMMAND PAIRS.......cccccenmmiininiirinnes &3
B. TACTILE ARRAY SIZINGootirrrreecireeisncctrensnenssisesssssssissesssesssssssssnsasssns 84
C. PROGRAMMABLE OSCILLATION FREQUENCYccooerrirrcrererernerrennn 84
D. COMMANDED RESETcccvtcemicecciicesissserensasnssssesesssesssssssssserenss 85
E. REVISED COMMANDED STRUCTURE.........cccccovrnnrreirneniee e 85
VIII. INCORPORATION OF ADDITIONAL DESIGN FEATUREScccooivmnnennnne 87
A. IMPROVED BI-DIRECTIONAL CURRENT SWITCHING SCHEME. 87
B. PROGRAMMABLE OSCILLATION FREQUENCYcccccocvmunenes — 89
C. WAVE SHAPE GENERATION USING DUTY CYCLE........ccooerrennrennes 90
D. REVISED COMMAND DECODER AND CONTROLLER............ennne. 91
IX. CONCLUSIONS AND FURTHER WORKcccocemiiiniitciieicinerereensseessenenens 93
A. TACTILE INTERFACE SYSTEM PERFORMANCE..........ccvenvrcnrnnrnnen 93
1. Simulation Performance during Design Process.........cocovveevieeeeennenne. 93

2. Parallel Port Data Modulator Performance...........oc.eeeeeecerereeeuseuenunensisennns 93

3. Manufactured TIC Performance...........c.ccoceemievincerensmnsennennesisiessnsseseeenss 94

B. IMPROVEMENTS THAT ARE READY TO INCORPORATEccccoeueveee 94
1. Expanded Communication Protocolcccccovveirmrneinnenne. trnereeenrasnans 94

2. Shaped Oscillation CUITENL.........ccoceviinueireiiiintierereeeseesssseeseesnssssssssnes 94

3. Programmable FIequency........cuivnirniiinicncniinrecteeeneeeessseenas 95

C. RECOMMENDATIONS FOR NEXT VLSILAYOUT.......ccceveriirecerernnn 95
1. Elaborate Testing and Measurement Points.............cooveevevincrinnienninnennns 95

2. Timing with Up Counters and COmMPAarators.............cccceuvsserseeseeessssssenens 95

D. PROSPECTS FOR FUTURE DEVELOPMENTccccoetmemmmemmsmminnsininennns 95
1. On-board Current SWItChiNgcceveeerueererescrienerenerenecrscserisnsesesssnenes 95

xi

2. Programmable AAAressingccoocriimvmininiieeenissesssessssssssssssesens 96

3. Two-Way COMMUNICALIONScvvveremmrrmrerereresseresrsenenssssessssssssssssssssssscssssnes 96
APPENDIX A. TIC MODELING USING VERILOG.......ccomiiriiinninnsennesensiesens 97
A. TACTOR INTERFACE CHIPovovoueececeminccininitinicncenenstseeeessssnsssssssssseses 97
B. SERIAL DATA RECEIVER ...ttt seees 100
1. Twelve-Bit Input Shift REZIStETccevivimiurreieieieieeense s 102

2. Eight-Bit Data LatChcoiuiuimiiiteieisinisienissessnesseiscssescscaessnssasons 105

3. Input Stream Validity ChecKcoveruermrirciniieieiieicciiininicinsarienanns 107

C. COMMAND DECODER AND CONTROLLERccccevertnerennnisisensnenes 110
1. Command Sequence COntrollerouovieriirieinrieeeenssenncesasinns 113

2. Address COMPATALOTc.cceururuererimremsesssesssssssnasssssesssssessssaessassesssssses 117

3. Address REfEIENCEcverevieeirerenieiesteeenesreisssstcsassssssaesssssene s sassases 120

4. Pulse Width REZISLET....c.cccoviirririrmerinteeintestseestsse et 121

5. Repetition Period REZISIETcveuirrerurreiseusimnirescensinsiiniscissasinnaessens 124

D. TACTOR POWER CONTROLLER.......c.occiiimreetnetinernrnssesnesesnecccesaes 127
1. Power Control LOZIC.....cccveecrciiiniriicieisenisnsesstessssssssssessacacassensacasases 129

2. POWET OSCILLALOTcveeveveeereeeaereereesrentraeissesessssnssessesssrnessssnssssasasssescasens 131

3. Pulse Width DOWN COUNLEToccerererercemeirnirerieriresaerenssessessssssseseeasscses 133

4. Repetition Period DoOwn COUNLETcceveruemnesirinnicnsnniscnciissinensnsasees 136

5. ClOCK DIVIAET ...ecevverierereeeneieeseeseeerestscenessnesssssesssssssnsssesessasssssssasssseseases 139

E. SUPPORT COMPONENTScovtreeitiriiiicsiesinssrienesesesessssssssssssssnsssesessasseses 142
1. Clock with Parametric Half-Period........c.ccoccomvinievemniniinniniennenieennes 142

2. D flip-flop, positive edge triggeTedovurenruerierrereriscencmsisisinninsensinnsas 143

3. Transmission Gate MUX.......ccoevcemrriiniinmnecinsisessiensiessess s essacsssscsenes 145
APPENDIX B. SYSTEM DESIGN SCHEMATICS........ooiiiiteeeensiintcssenisasanns 147
A. SERIAL DATA RECEIVERooereeniecinieccrnisiseninessenssnensre s nessnces 147
1. Twelve-Bit Input Shift REZIStET ...cuevevieiererreiieeeteceecciscnes 147

xii

2. Eight-Bit Data LatChccocviiiriiiie e 148

3. Input Stream Validity Check.......coovrurmrieiiiririneeesisieeee e 148

C. COMMAND DECODER AND CONTROLLER.........ccccourinrirrrrenrerarennene 149
1. Command Sequence Controll_er ... 149

2. Address COMPATALOLcocvuseuiucuisveriurinmsnsesesesrassessssssssssssssssssssssssasssssnas 150

3. Pulse Width RegISIET......cccovmeinieiiiiiiicinieteiieess st 151

4. Repetition Period REZISIETceeveiereerireisirinieiensneesieesseicenecnenses 152

D. TACTOR POWER CONTROLLER.........ccocomeitiriinnnnrieisienstessssssss s 153
1. Power Control LOZIC......ccoeeeeerecmmiininininineiisensseinesesesesnnssssssesasissesssnans 153

2. POWET OSCILALOL ... cocvereeeceeerrersereentsieeeeseremsissisesssesss s s ssnssssssassssesessssans 153

3. Pulse Width DOWN COUNLET .vrrreeeeeeeeereesssoeeeeeressessesssesssseesssssseseeseeeeees 154

4. Repetition Period Down COUNLETccccovememerirernininienesessesesiencssnsiees 155

5. CIOCK DIVIAETeuerreeererereererieeiriseenensssisssnssssesissssssssssnssasssssessnsasessssanes 156
APPENDIX C. STRUCTURAL EVALUATION USING SPICEcoieereeieirennnns 157
A. GENERAL DEFINITION FILEScccooiiininmininensessssssnssssesesenes 157
1. CMOS FET Model Parameterscccvucmrunirernnneennnnesissssssesssssassssenns 158

2. Fundamental Logic Element Definitions eeeeeeemmeseeeseseeemsssssssssssseessesennn 159

B. SERIAL DATA RECEIVER.cccoiretcintniiicncncnncissies s sesssssesasssns 164
1. Twelve-Bit Input Shift REISLETcccuemrivivmimiiietern e 167

2. Eight-Bit Data LatCh ...ttt ssssnsseses 169

3. Input Stream Validity ChecK......ocoiuemimniimeeieeeececcans 172

C. COMMAND DECODER AND CONTROLLERcomnviiiinriirinesirienness 176
1. Command Sequence COntrollercoiirieeeeieriieenseesssesenessseennes 182

2. Address COMPATALOTc..coecueueumuireiirnmsiiessiesesesesesssesesesssesssasssssssssssssssecs 185

3. Pulse Width REZISteT......ccooririnurmiiiiiiniiitisaciiecvceresesese s 188

4. Repetition Period REGISLETcccmucvuirurcmmeiminacansasersrsesesssssssssasssansess 191

D. TACTOR POWER CONTROLLER.........occcoriniririinntirereierererenenenecsssnssnes 194
1. Power Control LOZIC....ccccvueueeeircereriniininnciiiisscssesseeensesssssesessanenns 198

2. POWET OSCIIALOTccverereeeieeeicreeciseieresne st seseses s enas e
3. Pulse Width DOWn COUNLET.......ccucerirriiiniiiiinienirnsssesnessesseesssssssnsasas
4. Repetition Period Down COUNETceveueimrmresemenccnersisisininisisieninssnas

5. Clock Divider.......oveeveveevennee oo s s s e e tassnenns

APPENDIX D. TACTILE INTERFACE ANIMATION PROGRAM.......cccooveucmiiurunnn.

A. ANIMATION DESIGNccoimiiiiniiniitiinierenteisssnsssessestssscssesisssassesssssnsesssees

1. TIC Visual Representationcoccoeeeerereisssrmissessssisisisssssssismenassssssens
2. AnImMAation COlOr SCREIMIE «..ocuveeeerieeereerreeerereeestereseeeeeeresaesosssssssassassasanns
B. ANIMATION PROGRAMMINGcoovtiriirererrrenrerereessessiessssssssosssnsssnassnssssans

1. Intelligent TACOTcccovuivimircreinierriinseresstssnnsesss sttt ans s snssass
2. Command BYLEcccocviiiiiiiiniissnsestsstseete s
3. TIC DEINO......oereereereereereeesretssestssiesissssssssessessasssssassesesseesesstostesssanssnessaseans
4. Demonstration Applet HTML File.......ooivieinnniiiiniiniieienes

APPENDIX E. VLSI LOGIC ELEMENT DESIGNcoiiiiiinierrecenccsiisisnsnnnsnsnesenss
A. LOGIC ELEMENT SCHEMATICS.ooieerenciiicsinicnneeinnsnaeases

R 1775 4 1< OO SOOI PO PP
. Two INPUt NAND ..ottt
. Three INput NANDcoiiivininirintrininnne e e saens
. Four Input NAND ..ottt sasnns
Three INPut ANDoooviimrieiriesiesesssss et
Four INput AND ...ttt n s sesasnes
TwOo INPUt NOR ...ceiiiiitcictete et
Three Input NOR ..ottt
TWO INPUL XOR ..ottt nae b

10. Two Input XNOR ...ttt

11. D Flip FIOp With ClIEarouiereirierreieseentieicseccciisnscnn e

12. Two Input MUItPIEXETccvecureiiitrieanietnierisssssteseesnsacasinsasannnaes
B. LOGIC ELEMENT SPICE SIMULATIONS......coiiiiiiiieinrectennnneneneseenseenene

© P N L AW e

X1v

L IDVEIEET v vttt ettt ses st bbb s s s s s a s st nssesnns 228

2. Two INput NAND ..ottt es s sssssaens 228

3. Three Input NANDcociviiiimnirinieintnirststs st saenssaseesesns 229

4. Four INput NANDcomreureeercesnersscnsessscsssssssssssssssssssesssssssassssssssssnses 230

5. Three Input ANDccccoiiininineete ettt 231

6. Four INput AND ...ttt sssccssssssssssasnes 232

7. Two Input NOR ...t v 233

8. Three INPut NORccoormmviirniiririiiecsnice st stscsessesenasssass 234

9. TWO INPUL XOR ...ttt ssse s sssssstssssnsessacass 235

10. TWO TAPUE XNOR oo eesersesee s e 236

11. D Flip Flop With Clearccoveueiemirereriiieieetnieneccnsnsnceecncnsnicnsaens 237

12. Two Input MUltipleXer........cvvviuimimrerereinennrisesssnecsessccstcssessasananns 238

C. VLSILAYOUT ... eeeeretrreseecesenscssesssesessssesesesssssssssssssassssnsssssssssssssessssane 239
1. Legend of Layout Layers........ueremiieecinisnisnsnsesnsesessesescssecsensnsanns 239

2. INVETTET .. .eeveereeeeeeerresee e seteesessre e eseseatsaes e esss s e bensae s s b st asasn s ssnsans 240

3. Two Input NAND ..ottt setsassaaes 241

4. Three Input NAND ...ttt sasssenns 242

5. Four Input NAND ...ttt s sssssansnsnes 243

6. Three INput ANDc.coemiiiiicineeeieeiiere sttt ssesesesensnaes 244

7. Four Input AND ..ottt 245

8. TwO INPUt NOR ...ttt ssssenaens 246

9. Three INPUt NORc.coviiiiiciiricccte st caesns 247

10. TwO INPUL XOR ..ot s et sssesssss s ssesessnsrocses 248

11. Two Input XNORcoeiiiimcirirnimcncarissaeissesssssessssesssssssssssscssssesssscs 249

12. D Flip Flop With CIear ...t ieesseeseeecsecsscsenens 250

13. Two Input MUItIPIEXETc.civimiriiriininincii et esenscseses 251
APPENDIX F. PARALLEL DATA MODULATOR DESIGNcccocvniminnennennnenenens 253
A. COMMAND MODULATOR DESIGN USING VERILOG®......cccossurrrrrrseeenn 253
1. Four-Bit Register with Equality and Parity Calculationccccceeueennee 255

XV

2. Control State MACKIIE ...c.cccveeeererrrreiienreesreeessrreresenssessnseressetosssssessssseasens 256

3. Eight-t0-One MUultiplEXeTccovevimrirmriernreieininiennreseincensenscsssnsnescssns 259

B. COMMAND MODULATOR IMPLEMENTATION USING ABEL™ 261

1. Four-Bit Register with Equality and Parity Calculationcccoeeueeee 261

2. Control State Machinecccceevuerevmnmnininieneeeeseseessse st 263

3. Eight-t0-One MUultipIEXeTcoeeverrerererrirmensnninresscnnenrecnseeccnensisssnsans 265

C. COMMAND MODULATOR ELEMENT INFORMATION.cocovvienencncs 267

1. Four-Bit Register with Equality and Parity Calculationccceeeeeee. 268

2. Control State MAChINEcecccecrenireiriiiienierersteessssssasssssasssastsssssassenes 271

3. Eight-to-One MUltipIEXETc.cuocurvrimeerrrrrinrnrisiensnssseesiniecesisessssenscnsans 274
APPENDIX'G. COMMAND TRANSMISSION PROGRAM.......ooiiirerininiicininnnns 277
A. PARALLEL PORT COMMAND TRANSMISSIONccooiiiinineeneecininencne 277
APPENDIX H. GOMAC CONFERENCE PAPER...........ciiiiescncsicisncscnccaninns 279
LIST OF REFERENCESccccovuirreeerrnennnes et eeteaeaetea et b et ettt r s a e Reaees 285
INITIAL DISTRIBUTION LISTcouiiieirecninciieinnnennieniesesss s sssssssssssensescssnsasnsnssssaens 287

Xvi

Xvil

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.

LIST OF FIGURES

TSAS TaCtOr CONLIOL.uuerurerreeeemreecrecereinsrencciits st b s s asesssssssssasasens 3
Local Tactor Control.................; ... 4
Composition of the Intelligent TACIOL..........cvuviurecreririrmrieirrieisesse e sresesesssens 5
Tactor Current-SwitChing SIUCLUTE.ccuecceuerericniiiiniieeririictiireeee s eaeaes 8
Tactor Activation Parameters.c.ccovrcereireniincsnnrenienniniinintiseeeesesssessesssessssensens 9
Standard USART data packet format.cccceeureivererecverscininicscnnneesicssnessenens 16
TIC Functional MOUIES.ceceveveureerereecrrrereeenreesessieeeesesesssenssessesssssssssassessrennas 20
TIC Operating States and TransitionS.........ccceeveerereresreteneresiensssissessessssssasesssaceses 22
Serial Data Receiver EIEMENLS.cccereeececuisinicninieinneiasiesninesesenesessnssssesassssesesss 24
Partial clearing prevents Erroneous Command Detection.eeveveveereecennnnne 24
Command Decoder and Controller Elements............coccvvevreiniineerinrereeisssneeenns 26
Tactor Power Controller EIEMENtSs.......cccceeveeeieerrieneniereriienenniineinrensnensienesesseesas 27
Alternate Structures for Realizing the Address Comparator.cceeeeereererennans 43
Tactile Interface Animation BasiCs......cccceceveverviiiniriicecninicinneentetsineesssessenesnne 52
Tactile Interface Animation in Progress.ccccceivveneeencninverennineniesnsisssnsseneenns 53
Inverter Response for Various PFET Widths........covoveiincceen 57
Delay Circuit for Measuring Inverter RESponse.c.ccoveveeenineeesnnsscncsicecnnes 58
Inverter Transmission Response for Delay Circuit. ceeeteeeea e eae s s asnsbeneen 58
Completed Tactor Interface Chip VLSI DeSign......c.covvvveiirerniemnirnnnsineinenesnneeees 62
Layout Map of the Tactor Interface Chip VLSI Design.cccoeveveeeecconnennecscnenne 63
Simulation Results from the Complete TIC Design.ccoveeeerieieieeecesnneeneiennse 64
Command Modulator Conceptual Design.c.covciivinuirmienienrirenesresseecsssssenns 66
Parallel Poﬁ Connector with Pins Numbered..........cccoovveevivimnneivnnierinineiiensnnnnnns 68
Parallel Port Modulator Component Layout.ccocovvireccmniineereninsiesnnesnscens 70
Parallel Port Modulator Top Layer Routing..........ccoveeeeiieeneenienieniennesieseescnnencee 71
Parallel Port Modulator Bottom Layer ROUtING.ccccovmviininiriieninennneininenene 71
Command Modulator Top Layer after Machining.........c.cccoeverimieieninnninnsieennenes 73
Fully Assembled Command Modulator.ccceuevereverereinerenens e 74
Command Modulator Output for 19 Command...........ccccouemnirrnrnrresnsnsessnennens 75

Xviii

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.

Command Modulator Qutput for 218 Command............cceeuieremeneeinierencnnnnines 76

Tactor Interface Chip Pin ASSIZNMENLS.cccvvvriierremnireeeriininintnsesssssssnssesssssssenssns 78
Scanning Electron Microscope Images of Potential ShOTtS.ocuvvvvieriirininennes 80
Scanning Electron Microscope Images of Aluminum OXidation.cc.ceeeveeenes 80
Scanning Electron Microscope Image of Mask Failure...........ooveuereuninnicncnccnce 81
Scanning Electron Microscope Images of Embedded Impurities.cevuevveen. 81
Tactor Current-SwitChing SIUCIULE.cccvrviiiriiererrieireerirstesse e sssssseseens 88
Initial Current Switching Pattern.ccoocmmeeiiniirenieieesecenee s 88
Revised Current Switching Pattern.ccccveviernieeninininieieiiietsenesneseieeneeees 88
Generating the Oscillation Frequency with Revised Switching. cerevensressessssnsennnss 89
Wave Shape Generation using a Duty Cycle ReGISter........oouemrvrieiieineninnnncncneenee 90
Revised Command Decoder and Controller module.coovevnveieinenniensennnnne. 91
TIC Test Bench Verilog® SOUTCE COUE. .vurrnrerrreerirereraensraceeneseseesencescsssssssssssssnessaes 97
TIC Behavioral model Verilog® SOUTCE COUE.........rvvuummrrremsmmmrmsemssreesasseseesssccee 99
TIC Structural model Verilog® SOUICE COE.........rruermmrmrmmmmremsesssccesasnsessenssncne 99
Serial Data Receiver Test Bench Verilog® SOUICE COE. ...covvirivireririanrrcainirenns 100
Serial Data Receiver Behavioral model Verilog® source Code.ccoereuerrnncnnes 101
Serial Data Receiver Structural model Verilog® SOUICe COde.overurrrvreenirninnen 101
Twelve-Bit Input Shift Register Test Bench Verilog® source code................... 102
Twelve-Bit Input Shift Register Behavioral model Verilog® source code. 103
Twelve-Bit Input Shift Register Structural model Verilog® source code........... 104
Eight-Bit Data Latch Test Bench Verilog® source code.coevererrcrnne R 105
Eight-Bit Data Latch Behavioral model Verilog® source code.......cooceeeeemrnnnnes 106
Eight-Bit Data Latch Structural model Verilog® SOUrce COde....cueemrreenirensncnnnns 106
Input Stream Validity Check Test Bench Verilog® source code......couwvvvvennnneee. 107
Input Stream Validity Check Behavioral model Verilog® source code............. 108
Input Stream Validity Check Structural model Verilog® source code............... 109
Command Decoder and Controller Test Bench Verilog® source code.............. 110
Command Decoder and Controller Behavioral‘ mode] Verilog® source code...111

Command Decoder and Controller Structural model Verilog® source code.....112
Xix

Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.

Command Sequence Controller Test Bench Verilog® source code.................. 113

Command Sequence Controller Behavioral model Verilog® source code. 114
Command Sequence Controller Structural model Verilog® source code........... 116
Address Comparator Test Bench Verilog® SOUTCE COAE. ..cvrmrrueamenreneereenrenenencacs 117
Address Comparator Behavioral model Verilog® source Code.c.oourueurerennnnns 117
Address Comparator Structural model Verilog® SOUICe COde. ...cveuerererrurururnnnes 118
Address Comparator Alternate Structural model Verilog® source code. 119
Address Reference Test Bench Verilog® source code.rrrsrerenne 120
Address Reference Behaviorél model Verilog® SOUICE COde. ..ouueurnurmrecrerecncnns 120
Pulse Width Register Test Bench Verilog® SOUrce COAE. .uvvmmmmmrmrrrrrssssesenes 121
Pulse Width Register Behavioral model Ven'log® source code.c.coceueuerernruene 122
Pulse Width Register Structural model Verilog® source Code.cceeuruemeneerennne 123
Repetition Period Register Test Bench Verilog® source code.c..corrvurerrunn 124
Repetition Period Register Behavioral model Verilog® source code.......c..ceunu. 125
Repetition Period Register Structural model Verilog® source code. 126
Tactor Power Controller Test Bench Verilog® source code..... 127
Tactor Power Controller Behavioral model Verilog® source code.ocovueunnen 127
Tactor Power Controller Structural model Verilog® source code........cevininnes 128
Power Control Logic Test Bench Verilog® SOUICE COE. ..ovvevenrerinerermcrenerernnnnes 129
Power Control Logic Behavioral model Ven'log® source code.ccoeuerereecunn 130
Power Control Logic Structural model Verilog® source code.o.o..vurevrvenne. 130
Power Oscillator Test Bench Verilog® SOurce code.o.uuemreernressseceaenes 131
Power Oscillator Behavioral model Verilog® source code.ccoeverrricnnnennenns 132
Power Oscillator Structural model Verilog® SOUrce Code.cuvevevirvinenennnens 132
Pulse Width Down Counter Test Bench Verilog® source code.mreereenne 133
Pulse Width Down Counter Behavioral model }Verilog® source code. 134
Pulse Width Down Counter Structural model Verilog® source code. 135
Repetition Period Down Counter Test Bench Verilog® source code..........ou.... 136

Repetition Period Down Counter Behavioral model Verilog® source code......137

XX

Figure &9.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.

Repetition Period Down Counter Structural model Verilog® source code........ 137
Clock Divider Test Bench Verilog® SOUICE COUE.....veurireirerieeerenieesesaneesenanes 139
Clock Divider Behavioral model Verilog® SOUICE COdE. ...oueverereerreneerrecensnenes 140
Clock Divider Structural model Verilog® SOUICE COAE.....veveeereceeneeereeneenenenens 140
Clock with Parametric Half-Period Test Bench Verilog® source code. 142
Clock with Parametric Half-Period Behavioral model Verilog® source code...142
D flip-flop Test Bench Verilog® SOUICE COUE. w....vvumrrrrenrnsressnenessessnsssssnnsssesens 143
D flip-flop Behavioral model Verilog® SOUICE COAE.....eevrueniririrnerenineenencerainnes 144
Transmission Gate MUX Test Bench Verilog® source code.coceeveemeeneucnennns 145
Transmission Gate MUX Behavioral model Verilog® source code.cc..... 145
Structural Schematic for the Twelve-Bit Shift Register.cccccevveivrvernnunnne 147
Structural Schematic for the Eight-Bit Data Latch.coouvvieviinnninnnninnennnnne. 148
Structural Schematic for the Input Stream Validity Check. 148
Structural Schematic for the Command Sequence Controller..............coveveeenes 149
Structural Schematic for the Address COmPparator.ococeeveeeevereeneninsnans 150
Structural Schematic for the Pulse Width RegiSter.........ccccovuvemeuruenrinencecrerennn 151
Structural Schematic for the Repetition Period Register.cccccvveveeennnnes 152
Structural Schematic for the Power Control Logic.coeeveiiiiinincrnnnennannen. 153
Structural Schematic for the Power OSCIlator.o.cvoveerieiieinninrieecccnans 153
Structural Schematic for the Pulse Width Down Counter.ccccoeevecevennnnee. 154
Structural Schematic for the Repetition Period Down Counter.cce...... 155
Structural Schematic for the Clock Divider.ccovuiicircininniccveeesrnennens 156
CMOS PFET and NFET SPICE model definitions.........ccooeuieeesenenenenennnan 158
Subcircuits for Fundamental Logic Element SPICE model definitions. 159
Serial Data Receiver SPICE model source code..........umvmeuneuiiniererenerennennnn. 164
Serial Data Receiver SPICE model 1eSpOnSe.cucueivemruirmenereeensiesessaensenans 166
Twelve-Bit Input Shift Register SPICE model source code.............covvererneecen. 167
Twelve-Bit Input Shift Register SPICE model response.cccevereenuensieinns 168
Eight-Bit Data Latch SPICE model source Code.ccooeeninmennierinsenceinnnnns 169
Eight-Bit Data Latch SPICE model input.ccocueueeueveereininininnienessssecesnans 170

Xxi

Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.

Eight-Bit Data Latch SPICE model 1eSpOnSe.cccoevirimiriimeerenceniniesesenenen. 171
Input Stream Validity Check SPICE model source code.ccccourveuiniennennnn. 173
Input Stream Validity Check SPICE model input.cccocoeueveeeirirennirnuennn. 174
Input Stream Validity Check SPICE model 1eSponse.cccrueieevienincninnnenes 175
Command Decoder and Controller SPICE model source code.........c.ccoeuuneenns 178
Command Decoder and Controller SPICE model Control response. 180
Command Decoder and Controller SPICE model Register response............... 181
Command Sequence Controller SPICE model source code..........ccocoeemrvemnnnen. 183
Command Sequence Controller SPICE model TeSPONSE.cvueevrseresrecresncceens 184
Address Comparator SPICE model source code.........curvemirererernrinaciensensnnnens 186
Address Comparator SPICE model TESPONSE........ccueveerereirierurrsrrenseiasnsinsesenss 187
Pulse Width Register SPICE model source code...........cuuvueunurmreeinrererecneunnans 189
Pulse Width Register SPICE model 1€SPONSE.ccueuevireeiererirenereseesssennannas 190
Repetition Period Register SPICE model source code.coverrrinennrensncnees 192
Repetition Period Register SPICE model 1eSponse.covueeimeineinniceiniiennnes 193
Tactor Power Controller SPICE model source code..........coovinmmmnrnecienascnuenns 195
Tactor Power Controller SPICE model T€SPONSE.evereesecesseresmecerencemsaees 197
Power Oscillator SPICE model Source Code.ovmmimrmmnnnereieensneensesenennennes 198
Power Oscillator SPICE model TESPONSE.c.vucurrurinerscsennicmsescacesinsissinseniannans 199
Pulse Width Down Counter SPICE model source code.cccoeuevemnrruerrinrnnnes 201
Pulse Width Down Counter SPICE model response.ccovevevnieeecncncsccnncnes 202
Repetition Period Down Counter SPICE model source code.cocceecueuneuce 203
Repetition Period Down Counter SPICE model response.........coeeevriececccncnes 205
Clock Divider SPICE model source code.coeminrereeeeienieinsssissnsnssceseecnnene 207
Clock Divider SPICE model r€SPONSE.......ccvivuiruernisiesrrrueressessenesessssasasseonens 208
Tactile Interface Animation EIements.c..coceeveiviinnnincnenneireneeenseceeennennee 210
Tactile Interface Animation in PIOZIESS. c..cvuuvuuvurrimiiniaerneiiiniisiesssissisnees 211
Intelligent Tactor object JAVA source Code.omummieremrreneeinisnenineensenisnnecacs 212
TIC Command object JAVA source code......./. ... 216
Tactile Array Demonstration object JAVA source code.oveemeenuenennen 218
Tactile Demonstration Applet HTML source code.cveevnenenneenceeinnenenens 221

xxii

Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.

INVETtEr SCHEMALIC. ...ueuveererrireerereiererereaes et s s aens 223
Two Input NAND Gate sChematic.coeueeeeiereeeriernininissisesesnescsiseeieaes 223
Three Input NAND Gate schematicC.ocoveevvereiniennrerenenns C 224
Four Input NAND Gate SChEMALIC. c....oucurrverivsemmeesrmsnessssrsssessssessssessissssans 224
Three Input AND Gate SChEMALIC.cecvcuiurireuereenirirrieseresssssesssesssesssssssssnans 224
Four Input AND Gate SChEMALIC.coevrrrerrerinrisrnistssiessissseseiseisisesessessessnaes 225
Two Input NOR Gate SCHEMALIC.vvvvvrerersssrsssinsnvsnnessssssssssessssssmssssssssssssss 225
Three Input NOR Gate SChematiC........coevvevereurerirernnrrenesseniseeiecsstsenseeiniene 225
Two Input XOR Gate SChematiC.......cceevurrererememerrieiieeieieienscnrnsssetsneiees 226
Two Input XNOR Gate SChEMALIC......ovvuevereiririieirreieienensseieesesssssssnsessssnes 226
D Flip Flop With CIEAr SCHEMAMC. ..cuueuussuessssssssssssssmsessesssssesesssssssssesesssesesessessene 227
Two Input Multiplexer SChematiC.o.eeueieeneciecincenn e 227
Inverter SPICE model source code.ovuuiiniimniiunmcinireneirnseniesereesssssesnnes 228
Two Input NAND gate SPICE model Source Code..........ouvuermniannnisnnisnsninense 228
Three Input NAND gate SPICE model source code.........c.cuounmrenrrerierecrecncnnnne 229
Four Input NAND gate SPICE model source Code.ocvunrrnnenisnsrniannnnnne 230
Three Input AND gate SPICE model source code..........coeiereirieninsnsenesnsenenes 231
Four Input AND gate SPICE model source Code.ocoeurninrmrurirnninnecnseecncs 232
Two Input NOR gate SPICE model source code.cc.eieinieinmnnnnncnisnennenans 233
Three Input NOR gate SPICE model Source Code.oeuveeemnienesinssencuennes 234
Two Input XOR gate SPICE model Source code............oouemveeierersneerenesnsnnncs 235
Two Input XNOR gate SPICE model source code...........cccoeueierereerennnnnnnenns 236
D Flip Flop with Clear logic element SPICE model source code. 237
Two Input MUX logic element SPICE model source code.c.ccoevueueunnnnc. 238
INVETLEE JAYOUL. c.eveveceerecnecnceciiscsencncnesesisessassssssess s s sess s ses s sesssssnsssasses 240
TwO Input NAND Gate JaYOUL........cvemreeercemeenssecerssesessessesecsssecrsaesssosssssssssans 241
Three Input NAND Gate 1ayOuL........ccovvvevemeineeieneisseieensse s sssssssesessees 242
Four Input NAND Gate Jayout.ccoeveueeemeererierersrescesssss s tssssnessasssenes 243
Three Input AND Gate 1ayouL........coeveirereeieieternineeinceitere st 244
Four Input AND Gate JayOUL.ccccvurireerirerrererieieies s sssessessnsnsas 245
Two Input NOR Gate 1ayouL.ccouvmerrmemeirisreieierneetiss et ssassssssasaes 246

Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.

Three Input NOR Gate 1ayout.coovveeiniennienieiceeetnseneesesee 247
Two Input XOR Gate JaYOUL.c.cccevrmvuiiriinirinriisteteresenie et ssesssssssenas 248
Two Input XNOR Gate 1ayOUL.cccririimrreriiierieieieiensnsssi st snessessssesens 249
D Flip Flop with Clear IayouL.c.coemeeemiueieieesinsnsineeecesretessensnenenes 250
Two Input MultipleXer 1ayOuL.ccoueevmecvinirieiennnreneirie ettt eneeacnes 251
Test bench for Parallel Port Data Modulator Verilog® model source code.....254
Test bench for Four-Bit Register Verilog® model source code.............orvveennn. 255
Four-Bit Register Verilog® model source Code.coovvevrercrnmneeercrieseienninnns 256
Test bench for Control State Machine Verilog® model source code. 257
Control State Machine Verilog® model SOUrce Code.vueummmmrrrvveessneceeen 258
Test bench for Eight-to-One Multiplexer Verilog® model source code. 259
Eight-to-One Multiplexer Verilog® model source code.oomrveeeneeeee: 260
Four-Bit Register ABEL" SOULCE COUE. ...ourveneereververeasvsreseseasssasssessssssasesssssnes 262
Control State Machine ABEL™ SOUICE COUE.vurrennrremmrrarerssmersasersssesserseneces 263
Eight-to-One Multiplexer ABEL" SOUICE COE. -...vvrrrrerrvarrrennrsssesessseseseseanas 266
Four-Bit Register Summary Information.eeeeveeoinmnmnnircicinccccnininicnenns 268
Control State Machine Summary Information.ccoeevevevinneneeneeecnennnenes 271
Eight-to-One Multiplexer Summary Information.cceceveveeninnccccsccnnnes 274
Command Transmission Driver C++ Source code...........coeeieierrmrisssserassnencne 278
GOMAC Conference Paper (page 1 0f 4).occveueeemerenrecusconscnensneisesssssssenns 280
GOMAC Conference Paper (page 2 0f 4).ooeeeereervenenreiennreinecsenceneacnnaes 281
GOMAC Conference Paper (page 3 0f 4).ccoveenririeenineenrssseienneeneee 282
GOMAC Conference Paper (page 4 0f 4).coviermrmereerriesininnnnessisnecscscscens 283

Xxiv

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.

LIST OF TABLES

Command Word Defilitions.c.cccoeveeeuerernercicrenemnescnneenissnisssssissesesssessssessisenss 10
Address Format DESCTIPHON.c.coceuereeiiiniiiiiisninireniniereicnssssreee e sessssessssesens 11
Pulse Width Register Command DesCription.ccoeeueuiverinurcrisisrnnnucecnsscnseneienens 12
Repetition Period Register Command DesCIiption.ccocovevierericrreneecccrensnennes 12
Required Bus Speed for Different ArchiteCtures..........oveeviieinieennerccneneesenrennnns 13
Intelligent Tactor Input REQUITEMENLS.ccouevvuevriciririninieninciente et 16
Summary of Signals for the Twelve-Bit Input Shift Register..........c.ccooeeereienenncenes 28
Summary of Signals for the Eight-Bit Data Latch.cccocovueiiinrnninniene, 29
Summary of Signals for the Input Stream Validity Check.ccouovveeviiiruniernnnnes 30
Summary of Signals for the Command Sequence Controller............ccouoveverenennnes 32
Summary of Signals for the Address Comparator...........cccoerverererereernenreeencsnannns 34
Summary of Signals for the Address Reference............ooveecieieiivnnennrcenneneennns 35
Summary of Signals for the Pulse Width Register.cccoevvneennnnnrircnencrnne. 35
Summary of Signals for the Repetition Period Register.cevveeeeevirereisnnnnee. 36
Summary of Signals for the Power Control LogiC.ccoeveimemrermnsienenneeenienenenens 38
Summary of Signals for the Power OSCIlIator.ccoeveeeeerineiinierninnnnisiesneennns 39
Summary of Signals for the Pulse Width Down Counter.ccoeeveueueeeuereienannes 40
Summary of Signals for the Repetition Period Down Counter.cc.ccoeuerunece. 41
Summary of Signals for the Clock Divider.cueueuerrreercriieeieiee et 42
Comparison of Alternate Logic DeSigns.........cceueveeimeemcieietceeenersseessesneenees 44
Inverter Delay SUMMATY........ccouiiveerimiiiniiiinienn st essseseseseses 58
Component Design SUIMMATY.ccoceururiireinmreieeietisnseseesesss s s sssssssesssssass 59
Standard Parallel Port Signal Definitions and Pin Assignments. ceeeeernens 67
Revised Command SITUCHUTE.c.ccceuereiviviniieinieniisisissssecsiencassessseesssssesesessssessns &5
Legend for Layers used in VLSILayout.ccoveeeirieiinnininnieeiensssiecseanne 239

XXV

Xxvi

ACKNOWLEDGMENTS

I must first acknowledge the impact God has made on my work over the last 27
months. It is only through his influence that I have been able to remain focused on my
research and studies. This work would have been much more difficult without a solid faith
upon which to anchor our lives.

My wife Debra and daughter Nickole deserve special recognition and thanks for
their unwavering support and understanding. Their love is the glue that binds our family
together and has allowed completion of this thesis.

Professor Douglas Fouts was essential in completing this research. He worked hard
to secure project funding and continued to support the research when the funding expired.
His insight was critical to making the right decisions for this project. I also appreciate his
support in getting our work presented at the 1999 GOMAC conference.

Professor Jon Butler was a great instructor and advisor during my study of computer
engineering. I share his love of logic problems and his creative insight often sparked some
of my most fundamental design decisions.

Dave and Addie Floodeen performed the Herculean task of reviewing this entire
thesis for content and flow. Their careful attention corrected many errors and ensured that
the words on the paper matched my intended meaning.

Deb Peyton was essential in reviewing the GOMAC paper. Her help with editing
supported an outstanding final copy.

Debbie Monroe provided support, encouragement, and project evaluation early in
this research. Iam grateful for her help and friendship.

Warren Rogers was extremely helpful in manufacturing the circuit board for the
Parallel Port Data Modulator.

John Falby provided guidance regarding development of the tactile interface
animation. In shaping my approach to software development and coding, he influenced my
computer programming skills beyond my expectations.

CDR Angus Ruppert and Brad McGrath of Naval Aerospace Medical Research
Laboratory provided excellent input regarding tactile communication physiology. They
were essential in defining the tactor timing requirements in the earliest phases of system
development.

Finally, I appreciate Terry Wood for his diligent work in developing a miniature

computer system that will enable implementation of this tactile interface. His dedication to
this project will be the fuel that leads it to success.

XXVil

XXViii

I. INTRODUCTION

In a natural environment, people continuously receive sensory information regarding
their position and motion from several sources: visual, aural, and sorﬁatosensory (distinct
bodiiy sensations such as balance). In an accelerating environment, human sensory
information can produce a false sensation of motion. Popular "virtual reality” amusement
rides exploit this effect by providing visual, aural, and somatosensory stimulation that
generates illusory feelings of motion and acceleration.

Under normal flight conditions, pilots frequently transition between a steady
environment and an accelerating one. When most time is spent in a constant velocity
condition, all sensory information concurs with the actual motion and spatial orientation is
maintained. During periods of extended acceleration, such as steep climbs, the body’s
somatosensory equilibrium shifts and a false sense of acceleration is exﬁerienced during the
subsequent steady environment. This conflicting sensory information can cause a loss of
situational awareness and spatial disorientation. During periods of visual distraction or
obscurity, the pilot must rely on his "feel” for the attitude of the aircraft. The false
acceleration sensation has contributed to many aircraft accidents by causing loss of
situational awareness and spatial disorientation.

When combing an underwater mine field, divers must swim a geographically
referenced search pattern. Geographic position indicators aid the swimmer in combating the
effects of current to maintain the desired search pattern. The current guidance system

provides a visual display of the required swimming direction. Consequently, the divers’

visual search effectiveness becomes severely degraded while they are referencing their
positional displays.

An interface that provides critiéal information without operator distraction would
benefit many military applications. An ideal system would communicate information
through a medium that does not interrupt concurrent visual and auditory interchange. A
prototypical interface has been developed to tactilely convey information by pulsing tactile

transmitters (“"tactors"). These tactors are situated around the torso to provide physical

stimulus in the form of variable-length, pulsed vibrations.
A. COMMUNICATING THROUGH TOUCH

Touch is a physical sensory input not commonly associated with conveying
computer information. Yet, when a person is touched, the response is immediate and often
involuntary. The immediate nature of touch response makes it ideal for communicating
critical information. Tactile communication can also be the most appropriate interface for
specific types of information when existing visual and auditory activities cannot be
compromised.

Existing research shows that various sensory responses can be effected by using
different tactile stimulus methods. Employing "sensory saltation” can produce a feeling of
directional motion using stationary tactors. Using a moving stimulus produces easily
interpreted information that is consistent among many observers.!

Additional research identified flight information required to properly operate various
fighter platforms. The required flight data was evaluated for each of the fighters to
determine how well the aircraft presented the parameters to the pilot. Many flight

characteristics are poorly represented in each airframe. The research proposed conveying

2

flight parameters through tactile transmitters mounted in a partial sleeve worn on the pilot’s
forearm. '
B. TACTILE SITUATION AWARENESS SYSTEM BY NAMRL

The Naval Aerospace Medical Research Laboratory (NAMRL) built a rudimentary
implementation of tactile communication in their Tactile Situation Awareness System
(TSAS). As illustrated in Figure 1, the current TSAS implementation uses a remote, parallel
driver to individually power forty (40) tactors. This method requires routing forty pairs of
power lines throughout the tactile vest. A simpler communication method is needed to éase
vest fabrication and maintenance. Additionally, the microprocessor is constantly burdened

with directly controlling power application to every individual tactor.

TSAS Tactor Control

Tactile
Interface
™ Array

O
)
‘0

Microprocessor
based
Controller

YYVY

\ 4

Figure 1. TSAS Tactor Control.

The wiring harness requirements could be dramatically reduced by using a bus
communication structure with local power switching. This approach would provide a

standardized wiring scheme and eliminate the continuous processor load caused by remote

power control. A bus architecture would also maximize flexibility by allowing the number
of tactors to be varied between interface applications.

A miniaturized network interface card will allow connecting all tactors to a single
information bus as shown in Figure 2. Each interface chip will continuously monitor the
bus for a command addressed to its tactor. Upon detection of a properly addressed
command packet, the interface card will decode and execute i:he command. Power will be
switched by the interface chip to allow the controlling microprocessor to dedicate its full

processing ability to interfacing with the host technology and determining the best tactile

representation of the received platform parameters.

Local Tactor Control

Tactile
Interface
Array

Microprocessor] I-DO

based
Controller J

) 4

Figure 2. Local Tactor Control.

C. DEVELOPING INTELLIGENT TACTORS
To refine the tactile interface, we developed a compact communication topology for
connecting each tactile transmitter to the controlling microprocessor. Serial

communications were selected for this application to minimize the number of conductors

required for data transfer.

An application-specific Tactor Interface Chip (TIC) provides the necessary hardware
to realize the communication scheme. Each tactor in a forty-element array will include a
TIC, as shdwn in Figure 3, that controls tactor activation. This hardware combination forms
an "intelligent tactor" that shifts waveform creation from the microprocessor to the
individual tactor assemblies. The resulting decrease in computational load allows use of a

slower microprocessor, decreasing system power consumption.

~
~

\l.'\\ 4-wire
 harness

i
{

tactor -, BN ﬁg ;‘3,%7 L@@@‘@&W;&

housing Tactor Interface Chip

-
> -

Figure 3. Composition of the Intelligent Tactor.

D. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II discusses
development of the communication protocol. Chapter III discusses specification and design
of the Tactor Interface Chip. Chapter IV discusses the layout and evaluation for the VLSI
implementation of the chip. Chapter V describes development of a parallel-port data

modulator used to drive the tactor array during testing and demonstration. Chapter VI
| 5

discusses testing the fabricated chip. Chapter VII describes revisions to the communication
protocol. Chapter VIII discusses design changes to incorporate additional féatures in the
interface chip. Finally, Chapter IX contains conclusions and suggestions for future work.
Many appendices are included to provide specific technical data necessary to fully
understand the design efforts and decisions. Appendix A contains listings of the Verilog
source code used to design and evaluate the electronic modules that comprise the TIC.
Appendix B provides schematic diagrams of all TIC modules and components. Appendix C
details the SPICE simulations performed to validate and verify all aspects of the TIC design.
Appendix D covers the animation program used to illustrate the operational relationships
between the received components and the various TIC components. Appendix E contains
the design details of the VLSI logic elements used to implement the TIC on a single
microchip. Appendix F provides all design efforts in creating the Parallel Port Data
Modulator for sending commands from a standard computer parallel port to the tactile array.
Appendix G documents the program written in C++ to place command bytes on the parallel
port for subsequent transmission by the command modulator. Appendix H includes a copy
of Reference 2, the paper presenting this research to the 1999 Government Microcircuit
Application Conference (GOMAC). The files listings from all appendices have been

compiled separately on CD-ROM.

II. COMMUNICATION PROTOCOL

To support implementation of a tactile information interface, it is necessary to
develop a communication protocol that meets the system control requirements. When é
suitable command protocol is defined, various architectures can be evaluated to determine
the best option for rapid communication between a controlling microprocessor and (at least)
forty tactile transmitters. Flexibility and expansion are supported by using a common
communication bus and intelligent tactors. As mentioned in the previous chapter, an
intelligent tactor is formed by mounting a Tactor Interface Chip (TIC) in the tactor housing
(see Figure 3) to locally control tactor activation. This chapter presents the command
structure developed and the communications architectural design to implement the tactile
interface.

A. DESIGN REQUIREMENTS

To establish a framework for system design, we must first take a macroscopic view
of the intelligent tactor. Fundamentally, the TIC must control the application of current to
the attached tactor as directed by the systefn controller. Additionally, the command
structure must support the addition of ore tactors to the present system.

1. Required Output

Each TIC must provide a controlled, bi-directional current to the attached tactor in
response to commands it receives from the controlling microprocessor. When activated, the
TIC must energize the tactor at the specific frequency for which the tactor is designed. The
activation duty cycle is determined by the commands received; commands are fully

discussed in the following section. The TIC must activate the tactor as soon as an

appropriate command is received and it must immediately stop tactile stimulus when a

"terminate” command is received.
Bi-directional current is achieved using the switching network illustrated in Figure 4.

The TIC activates the switch pairs of Figure 4 in an alternating fashion to drive current

through the tactor in opposite directions.

+5V

1a 2a

2b 1b

gnd

Figure 4. Tactor Current-Switching Structure.

2. System Configuration

The tactor control system must be capable of independently issuing commands to
forty individual tactors. The activation cycle should repeat with a minimum period of 100
mS and a maximum of 4000 mS. During the activation cycle, the TIC must be able to adjust
the length of activation from a minimum of approximately 50 mS to a maximum of
approximately 1000 mS. Finally, the system must be able to sequentially activate two

tactors within one millisecond (1 mS) of each other.

B. CONTROL STRUCTURE

1. Address

Transmission of tactile messages requires each tactor in the forty-element array to be
capable of producing defined pulse shapes. These tactile signals can be independent or
synchronized with several other tactors. Each TIC must be able to recognize commands
meant to control its attached tactor since the pulse shape parameters are transmitted on a
common data bus. Unique identification is accomplished by assigning an "address" to each
TIC.

2. Pulse Shape

Tactors are repeatedly pulsed to convey information to the user. Changing the pulse
duration and pulse rate creates different physical sensations; this can be used to relate
differing messages. Pulse shape production requires two parameters, pulse width and
repetition period, illustrated in Figure 5. These values are stored in TIC data registers and

are used to control tactor activation.

<——— pulse width ——>

bipolar tactor tactor
activation idle
repetition period

Figure 5. Tactor Activation Parameters.

C. COMMAND FORMAT

It is best to use an eight-bit command language format, if possible, since the tactor
array is being driven by a commercial-off-the-shelf microprocessor and associated
communication ICs. Therefore, the first iteration of the command structure evaluated the
feasibility of incorporating all desired TIC functionality within the 256 different eight-bit
commands. To simplify the interpretation of the commands, it is most effective to group the
commands together in a way that minimizes the number of bits that uniquely identify a
command type. Considering these two goals and the three basic command types it is best to
separate the commands into one set of 128 and two sets of 64. To accommodate the desired
number of tactors and to allow for future expansion with more tactors or multiple addresses
on a single TIC (discussed later), the 128 command group is assigned to the address
commands. This provided similar command words for the two register-type command sets,
pulse width and repetition period. The command distribution plan is outlined in Table 1 and

discussed in more detail in the following subsections.

Command Word Meaning
OXXXXXXX 7-bit Address
10xxxXXXX 6-bit Pulse Width
I1xxXxXxXX 6-bit Repetition Period

Table 1. Command Word Definitions.

1. Address Command Word

The tactor address command word indicates to which tactor the subsequent
command is being sent. This addressing plan allows issuing a command to a single tactor

since each TIC contains a unique identifier. Table 2 summarizes the address command

10

word format. The all-zeros address is not used since this is the reset condition of the TIC
input register and internal data bus. The current convention provides capacity for up to 126
tactors. Additionally, the format can support future incorporation of tactor group
addressing. The all-ones address is hard-wired into every TIC to provide a universal
command capability. Uses for the "ALL CALL" configuration include turning off all
tactors during operations or energizing all tactors for testing. System design allows
stringing several addresses together before issuing the register command bytes. This will

facilitate concurrently issuing an identical command to numerous tactors.

Address Word Meaning

00000000 Reserved -- TIC bus idle condition

00000001 Addresses for up to 126 tactors; may
to also include group addresses.

01111110 ‘

01111111 ALL CALL -- all tactors respond

Table 2. Address Format Description.

2. Pulse Width Word

The Pulse Width command sets the actual length of time the tactor is energized. The
Pulse Width command format is summarized in Table 3. This command is implemented by
passing a value that represents the number of 16 mS time divisions to apply power to the
tactor. A value of zero is used to turn off the tactor. Using 16 mS time divisions with a 6-
bit multiplier (factor) produces 63 possible activation lengths including 0, 16, 32, . . . and

1008 mS. The 16 mS time divisions are generated by dividing an input reference pulse.

11

Register Command Meaning

10000000 Turn tactor OFF

10000001 Set Pulse Width to 1 through 63
to multiples of 16 mS (16 to 1008 mS)

10111111

Table 3. Pulse Width Register Command Description.

3. Repetition Period Word

The Repetition Period command defines the period used for pulse repetition. The
Repetition Period command format is summarized in Table 4. This command is
implemented by passing a value that represents the number of 64 mS time divisions to wait
before re-energizing the tactor. If Pulse Width is greater than zero, a zero Repetition Period
will energize the tactor 4continuously. Using 64 mS time divisions with a 6-bit multiple
produces 63 possible repetition period lengths ranging from 64 mS to 4032 mS. The 64 mS
time divisions are also generated by dividing an input reference pulse. A repetition value
that represents a time length less than or equal to the "on" time will keep the tactor

continuously energized.

Register Command Meaning

11000000 Tactor ON continuously if PW >0

11000001 Set Repetition Period to 1 through 63
to \ multiples of 64 mS (64 to 4032 mS)

11111111

Table 4. Repetition Period Register Command Description.

D. BUS ARCHITECTURAL CONSIDERATIONS
A primary concern regarding interface design is ease of system fabrication and

maintenance. Basic error detection is necessary from an operational perspective to prevent

12

system response to spurious noise. A parity checksum is used to detect single-bit errors.
This section compares two communications architectural design options for the tactile
interface.

1. Command Promulgation Speed

From a system architecture perspective, the most critical constraint is the speed at
which commands must be implemented by the TIC. This constraint is extrapolated from the
specification for a 1 mS maximum time between commands. The 1 mS maximum
command separation requirement can be met using either a parallel or serial data bus by
adjusting the data transmission clock speed. To evaluate the minimum data bus speed for
different architectures, the frequency required to transmit a given command length in 1 mS
is calculated. In a parallel implementation, each command byte requires a single clock cycle
to transmit. In a serial implementation, each byte requires eleven clock cycles: a start bit,

eight data bits, a parity bit, and a stop bit. Table 5 summarizes the bus speed requirements.

Command Length Parallel Bus Speed Serial Bus Speed*
2 bytes 2kHz 22 kHz
3 bytes 3kHz 33kHz
4 bytes 4 kHz 44 kHz
5 bytes 5kHz 55kHz
* Serial communication incurs a 3-bit overhead for data packet formatting.

Table 5. Required Bus Speed for Different Architectures.

2. Parallel Bus
Parallel bus architecture allows the fastest data transfer from the microprocessor to

the TIC. However, Table 5 shows that data transfer rates are not a limiting factor for this

13

application since bus speeds over 1 MHz are available. The advantages and disadvantages
of using parallel bus architecture include:
a. Advantages:

(1) Simplified TIC circuit design. The TIC could directly latch the
data byte from the external bus onto the internal commaﬁd bus.

(2) Much faster data transfer or lower required bus speed for a given
data rate. The reduction in required speed would reduce the required transmission power.

5. Disadvantages:

(1) Additional wiring is required in the harness assembly and vest
for data communications. This greatly complicates the fabrication process and makes.
maintenance and repair much more difficult. This also increases the size of the wiring
harness and the weight of the system implementation.

3. Serial Bus

Serial bus architecture reduces the number of wires needed for data transferring but
it requires a much more complex TIC input design. Advantages and disadvantages of using
serial bus architecture include:

a. Advantages:

(1) A minimum number of wires can be used in the wiring harness
and vest. This will ease fabrication and maintenance while reducing the size and weight.

b. Disadvantages:

(1) Much slower data transfer rate or higher required bus speed for a

given data rate.

14

(2) Much more complex TIC input circuitry. A serial to parallel
decoder must be implemented to support conversion of the serial data stream to parallel
command words.

E. ARCHITECTURAL DECISION AND JUSTIFICATION

The Serial Bus architecture is used for this implementation. This choice is primarily
based on the following essential considerations:

1. Fewer harness conductors will make vest construction and maintenance much
easier. Fewer connections at each TIC will also reduce the risk of failure and incor;ect
wiring. Additionally, fewer wires will minimize the system size and weight.

2. Conversion from parallel data to a serial communication stream is easy to include
at the controlling microprocessor. This custom parallel-to-serial conversion can be easily
adapted to allow use of many different microprocessors for future implementations.

3. Serial to parallel conversion at the TIC can be included in the VLSI design and
actually requires about the same layout area necessary to accommodate eight additional

input pads.

~ F. TRANSMISSION PACKET FORMAT

The Universal Synchronous/Asynchronous Receiver-Transmitter (USART) standard
provides a format for transmitting eight bit data by encapsulating the data into an eleven-bit
packet. The USART packet model is used to package the command bytes into a serial bit
stream that can be easily detected. The command packet, illustrated in Figure 6, includes a
start bit, eight data bits, a parity bit, and a stop bit. This package format also provides basic
fault protection by detecting all single-bit errors. While idle, the data line is held at a logic

"1" (+5 V).

15

L

g X é i 1
|

i 5 ;
xgxgxgxgx!x

i

t

| |
i start ; 8 data bits lparltyi stop ’

Figure 6. Standard USART data packet format.

When no data is present, the serial communication line is in an idle state, held at
logic 1. The data packet begins with a start bit that consists of a single 0. The start bit is
followed by eight bits of data, which are transmitted in order from the most significant bit to
the least significant bit. A running count is performed on the data bits and the number of 1s
is used to calculate the value of the parity bit. Using odd parity (the typical mode) yields a
parity bit of 1 when the data bit count is even and a value of 0 when the data bit count is -
odd. This scheme always produces an odd number of 1’s at the receiver when the eight data
bits and single parity bit values are counted. The parity bit provides detection of all single-
bit errors in the data stream. Finally, a stop bit of 1 is sent and the system is ready to
transmit the next data packet.

G. PHYSICAL CONSTRUCTION REQUIREMENTS
Inputs to the TIC fall into two basic categories: chip/tactor power and data/timing

signals. Table 6 summarizes the input requirements for the intelligent tactor.

Line Descﬁption
a) +5V Power for TIC and tactor
b) Ground Common ground line
c) Data Serial communication bus
d) Clock Synchronous clock signal

Table 6. Intelligent Tactor Input Requirements.

16

1. TIC and Tactor Power

The chip and tactor share a single +5 V power supply and a single ground line. Very
little power is needed to operate the chip since CMOS FET technology was used for TIC
fabrication. The entire chip, consisting of roughly 2000 transistors, requires approximately
8 mA of current. Each tactor will require between 100 mA and 250 mA (depending on
installed tactor) during operation.

2. Command Data and Timing Signals

The TIC receives all data on a single line whose voltage is referenced to the
common ground. A clock signal provided by the microprocessor facilitates synchronous
serial data transfer. The clock signal is also used to generate the timing references for the

control down counters and the tactor current oscillator.

17

18

III. TACTOR INTERFACE CHIP SPECIFICATION AND DESIGN

After defining the communication protocol needed to convey control signals to the
tactile interface, it is necessary to develop the hardware that will convert the serial
commands into tactile stimulus. The Tactor Interface Chip (TIC) is the application-specific
integrated circuit that converts the serial command stream into the bi-directional current that
drives the tactile stimulators. After discussing the TIC design goals, this chapter relates the
development process through all levels of abstraction. The conceptual operation is first
discussed as a system that is broken into three functional modules. Each functional module
is then defined by its operational requirements. The functional modules are then separated
into several assemblies with specific, cardinal tasks. Behavioral level system modeling and
simulation is then explained. Behavioral model conversion into logical structures and the
simulation and testing is described next. Finally, advanced system design features included
in the TIC are discussed.

A. DESIGN GOALS

In creating an intelligent tactor, the two primary design goals resulted from the need
to incorporate the TIC directly into the tactor casing. First, to reduce the size of the tactor
casing, all control circuitry must fit onto a single VLSI control chip. Second, to simplify
tactile interface production, a single design must be used for all tactors in the array. In the
prototypical version, use of a single TIC design for all tactors is possible by externally
setting the address parameter by grounding TIC input pins. In a future implementation, a
better mechanism could be devised to define the address of an individual tactor. The initial
TIC design also does not incorporate the solid-state power switches necessary for causing

bi-directional current to flow in the tactor. External power transistors are used to provide
19

current switching based on control signals from the TIC. This design was accepted due to
the expense of fabricating large transistors in a BICMOS chip. Planned modifications to the
existing design are discussed in the "Future Improvements” section of this thesis.
B. OPERATIONAL CONCEPT

Conceptually, the Tactor Interface Chip will interpret commands received on a serial
data bus and control tactor activation based on those commands. This scheme can be
broken into the three functional areas, recovery of the eight-bit command from the serial
data stream, interpretation of the command to affect wave shape parameters, and generation

of the ordered waveform. This organization is illustrated in Figure 7 and discussed in the

following subsections.

TIC Operational Components
Tactor Interface Chip
Seri P
Co(:n":z-nds Se"al
—» Data
Receiver Command
Decoder and
Controller
Corﬁmand
Bus
l l lRegisters
and Control
Power Tactor Power
> -\
Controller Bipolar Current

Figure 7. TIC Functional Modules.

20

1. Serial Data Receiver

The first functional component, the Serial Data Receiver, continuously monitors the
serial data bus and decodes the bit stream to detect properly formatted data packets. When a
valid packet is detected, the command byte is latched onto an internal command bus and a
data-valid signal is sent to the Command Decoder and Con&oller.

2. Coinmand Decoder and Controller

The second functional component is the Command Decoder and Controller. This
module interprets every command received to determine if the command applies to the
attached tactor. Relevant commands are executed and the associated memory registers are
updated. Extraneous commahds are ignored. The Tactor Power Controller is notified of
changes to ensure that tactor activation is immediately adjusted to conform to the new
parametric settings.

3. Tactor Power Controller

The final functional component is the Tactor Power Controller. This module
continuously produces two complementary timing signals tuned to the operating frequency
of the attached tactor. These signals are used to alternately activate the switch pairs in the
current—switéhing network shown in Figure 4. When timing signals are applied to the
switching network, the tactor provides stimulus to the user. The activation wave shape
described in Figure S is created by passing and blocking the oscillation signals based on the
Pulse Width and Repetition Period values stored in the memory registers of the Command

Decoder and Controller.

21

C. OPERATIONAL DESCRIPTION

The heart of TIC operations is the Command Decoder and Controller. As new
commands are placed on the command bus by the Serial Data Receiver, the data-valid signal
triggers evaluation by the Command Decoder and Controller. Response to the received
commands is controlled by the existing TIC operatidnal state. The operational state changes
based on the current state and the valid commands received by the TIC. The state diagram

in Figure 8 illustrates the TIC operating sequence and defines the state transitions.

Awaiting Valid Address

Register Command Received Valid Address Received
Initial State | Transition Condition : Next State
All Reset asserted A
A Bus valid & valid address B
B Any other address recerved B
B Any register command received C
C Any address received A
C Any register command received C

Figure 8. TIC Operating States and Transitions.

22

Initially, the TIC is in a monitor state waiting to receive a valid address. When an
appropriate address is received, the TIC shifts to a condition that waits for a command to set
the register values. When a register command is received, the TIC enters a state that
responds to all register commands until an address is detected. Any address received after a
register command marks the end of the command cycle and shifts the TIC to the monitor
state where it waits for the next properly addressed command set. This operating sequence
provides easy control consistent with the defined communication structure. An additional
benefit of this approach is that it allows a set of register commands to be sent to several
tactors simultaneously by preceding the commands with a string of address words.

D. FUNCTIONAL MODULE DESIGN

The top-down approach greatly simplifies circuit design by separating the specific
tasks into three functional modules. Each functional module is designed to operate
independently with well-defined inputs and outputs. This modular approach also greatly
simplifies testing at all design levels.

1. Serial Data Receiver

The Serial Data Receiver (Figure 9) continuouély monitors the input data line to
detect and latch transmitted packets onto the command bus. It consists of a twelve-bit shift
register, a validity checker, and an eight-bit latch. The twelve most recent data bits received
on the serial data input line are stored in the shift register. The entire 12-bit set is evaluated
uging the data-packet format rules. When a string of bits is detected that meets the validity
checi(, the byte embedded within the data pécket is latched onto the command bus. The
latch signal also generates a "Bus Data Valid" signal that triggers command decoding.

When a valid command is latched, a feedback path partially clears the shift register. This

23

clearing action ensures that two immediately sequential data packets do not produce an
erroneous command detection as shown in Figure 10. The partial clearing action also resets

the latch signal since the shift register contents no longer match the required data packet

format.
Serial Data Receiver
Serial Partial Clear
Data ———p» 12 bit Input Shift Register —
Input
12 bit Input Bus >
Input Stream
Clock ' Validlty Check
Input ’ Latch
P l——————
8 bit Data Latch
System . .
Reset P 1
8 bit Command Bus Bus Data Valid

Figure 9. Serial Data Receiver Elements.

idle Addr 10 idle PW 12 idle
1111000001010111111010001100011111
PW 63
clearing shaded bits prevents erroneous command detection

Figure 10. Partial clearing prevents Erroneous Command Detection.

2. Command Decoder and Controller

The Command Decoder and Controller (Figure 11) evaluates the received
commands and adjusts the internally stored waveform parameters if the command is
properly addressed to the attached tactor. It consists of a sequence controller, address
comparator, address reference, and two six-bit registers. The sequence controller is a state

24

machine (refer to Figure 8) that causes the TIC to react only to properly addressed
commands. The address reference maintains a unique address for the individual tactor. The
address comparator provides a "valid address" signal if the command bus holds either the
value stored in the address reference or the "all call" address. The TIC ignores all received
commands until the address comparator detects a valid address. It then updates the stored
value of pulse width or repetition period with every new register command. The pulse
width and repetition period registers operate identically. The registers continuously monitor
the command bus and indicate when the register value matches the bus value. If a command
is received that attempts to set the register to its current value, the command is ignored to
prevent a spurious interruption of the tactor activation cycle. If the difference signal
indicates that the register value must be changed, the new value is latched and the difference
signal is used to clear the latch signal. When the register value is updated, a control signal is
generated to force the Tactor Power Controller to restart the tactor activa.tion cycle so it will
match the new register values. This resetting action ensures that received register
commands are instantly implemented, thus securing tactor activation immediately upon
receipt of a termination (set pulse width to zero) command. Subsequently, when an address
is received, the TIC returns to the monitor condition and waits for the next properly

addressed command set.

25

Command Decoder and Controller

8 bit Command Bus

> Address < | Address

Bus

Comparitor Reference

‘Valid Address

Data
Valid

>
Command
> Sequence
PW Controller < RP
difference difference
Pulse Width Latch Latch Repetition Period
Register — ¥ Regi
giste! egister
Pulse Width Enable Repetition Period
Register Value Output Register Value

Figure 11. Command Decoder and Controller Elements.

3. Tactor Power Controller

The Tactor Power Controller (Figure 12) converts the input data signals into pulsed
bi-directional current that is applied directly to the tactor by using the switching network
illustrated in Figure 4. A frequency divider reduces the 1 MHz clock to a selectable tactor
oscillating frequency and a 62.5 Hz down counter clock. The oscillator frequency is applied
to the power oscillator to produce alternating current for the tactor. The power controller
uses two synchronized down counters to create the stored wave. Both down counters are
designed to count once from the loaded value to zero, maintaining the zero value once it is
reached. The pulse width down counter includes a status signal indicating when the count
value is equal to zero. The repetition period down counter includes a status signal indicating
when the count is greater than one. The control logic clears or loads both down counters

based on the down counter conditions and the control signal received from the Command

26

Decoder and Controller. These two down counter conditions are used to control tactor

activation by either passing or blocking the oscillation signals to the current switching

network.
Pulse Width Enable Repetition Period
l Register Output lRegister
Pulse Width < Repetition Period
Down Counter » > Down Counter
ff,',?ﬁf— Clock |82:5 Hz ? ?
Divider Clear| y |Load
PW
z RP Greater
ero Than 1
Osc > Power <
Freq . Contro!
Bi-polar Activate Logic
Tactor Power Output
Powe?__——. Oscillator
Tactor

Figure 12. Tactor Power Controller Elements.

E. VERILOG® DESIGN VERIFICATION

. Each functional module was simulated and thoroughly tested using the Verilog®
modeling system. First, behavior models were designed for all components and tested to
validate the design descriptions. The components were then assembled to create the
functional modules and tested to ensure proper operation of each module. The functional
modules were then assembled into a behavioral model for the entire TIC. This system
model was fully tested to ensure proper operation of the entire interface before
implementing the behavioral definitions into structural elements. The Verilog® models and

testing "benches" used for system design are included in Appendix A.

27

1. Twelve-Bit Input Shift Register

The twelve-bit input shift register is critical to decoding the serial data stream into
the transmitted command bytes. Twelve bits are required to validate the input stream
because the data packet format is eleven characters long and because the data line is held at
alogic "1." The shift register accepts input from the serial data line, clock, reset, and partial
clear. The shift register provides an output bus containing the value for each of the most
recent twelve bits received by the Serial Data Receiver. Table 7 summarizes the signals
used and produced by the twelve-bit input shift register. On the rising edge of each clock
cycle, a new data bit is latched into the lowest position of the shift register and all other bits
are shifted up one position. When a reset signal is received, all bits on the output bus are
immediately cleared to a logic "0." When a partial clear signal is received, the oldest ten
bits on the output bus are immediately cleared to a logic "0" and the lowest two bits retain

their existing values.

Twelve-Bit Input Shift Register Input and Output

Input Output
Signal Source Signal Destination
input data serial data input input bus data latch,
. : - . input validity check
partial clear | input validity check
clock clock input
reset system

Table 7. Summary of Signals for the Twelve-Bit Input Shift Register.

2. Eight-Bit Data Latch

The eight-bit data latch drives the internal TIC command bus. The data latch

receives input from the shift register output, reset, and a latch signal. Input from the shift

28

register is limited to the data lines representing the data-packet command byte. The output
from the data latch is simply the TIC command bus value. Table 8 summarizes the signals
used and produced by the eight-bit data latch. When a latch signal is received, the data latch
locks the value of each command bit onto the command bus. When a reset signal is

received, all bits on the command bus are immediately cleared to a logic "0."

Eight-Bit Data Latch Input and Output

Input Output
Signal Source Signal Destination

input bus* | shift register command command sequence
bus controller, address

latch input validity check comparator, pulse

. . width register,
Tese system repetition period
register

* only the bit positions representing the command byte

Table 8. Summary of Signals for the Eight-Bit Data Latch.

3. Input Stream Validity Check

The input stream validity check component continuously evaluates the shift register
output to detect a properly formatted command packet. The validity checker receives input
from the shift register output, reset, and clock. The validity checker produces the latch '
signal used by the data latch, the partial clear signal used by the shift register, and a bus
valid signal used by the command sequence controller component of the Command Decoder
and Controller module. Table 9 summarizes the signals used and produced by the input

stream validity checker.

29

Input Stream Validity Check Input and Output
Input ‘Output
Signal Source Signal Destination
input bus shift register latch data latch
clock clock input bus valid command sequence
controller
reset system partial clear | shift register

Table 9. Summary of Signals for the Input Stream Validity Check.

A format flag is used to create the output latch signal. The format indicator is
continuously generated by evaluating the twelve bits input from the shift register against the
packet format rules. Four specific conditions are required to generate the format flag: a) the
highest bit must be a logic "1" representing either an idle serial input bus or the stop bit from
a previous command, b) the second highest bit must be a logic "0" representing the start bit
for the current command, c) the lowest bit must be a logic "1" representing the stop bit for
the current command, and d) the parity check must yield a logic "1." The parity check is
performed using an XOR of the data bits and the parity bit. The format command may
experience some perturbations immediately following the positive clock edge as the input
bits change because the shift register data is shifted on the rising clock edge. To avoid
creating an erroneous latch command, the latch signal is not generated until the second half
of the clock cycle.

When the latch signal is triggered, a bus valid signal is produced to indicate the
presence of a valid command to the Command Decoder and Controller. This bus valid flag
continues for ten clock cycles, at which time it is cleared. The signal that clears the bus
valid flag is produced by the bus valid signal and the detection of "0 1" in the highest two bit }

positions of the shift register. This condition can only exist when the stop bit from the
30

current valid command reaches the second highest position of the shift register. Elimination
of the bus valid signal prepares the command bus for the command byte that might
immediately follow the current command.

After the format flag and the clock produce the latch signal, the command byte is
locked onto the TIC command bus. Then, a partial clear signal clears the highest ten bits in
the shift register to prevent the shifting bits from producing an erroneous command |
detection. The partial clear is generated by detecting both the format flag and the bus valid
signal at the same time; a condition that indicates a valid command has been successfully
latched. When the partial clear signal clears the highest ten input bits, the format becomes
incorrect and the format flag becomes "0." When the format flag changes "0," the latch
condition is lost and the latch signal is reset to "0." Additionally, the partial clearing of the
shift register forces the "0 1" transition that will clear the bus valid signal in ten clock cycles.

4. Command Sequence Controller

The command sequence controller is the component in the Command Decoder and
Controller module that acts as the central command processor for the TIC. It is responsible
for interpreting received commands and establishing the ordered tactile stimulus parameters.
The command sequence controller receives the bus valid signal,’ the valid address signal, the
pulse width difference flag, repetition period difference flag, clock, and reset signal. The
command sequence controller generates an enable output signal used by the Tactor Power
Controller module, a pulse width latch signal for the pulse width register, and a repetition
period latch signal for the repetition period register. Table 10 summarizes the signals used

and produced by the command sequence controller.

31

Command Sequence Controller Input And Output

Input Output
Signal Source Signal Destination
command data latch enable output | power control logic

bus

pulse width | pulse width register | pulse width | pulse width register

difference latch

repetition repetition period repetition repetition period
period register period latch | register
difference

bus valid input validity check

valid address | address comparator

clock clock input

reset System

Table 10. Summary of Signals for the Command Sequence Controller.

When the system reset is applied, the command sequence controller shifts to state 0
and the enable output, pulse width latch, and repetition period latch signals are all set low.
Since all outputs from this component are dependent on the controller operational state, the
state transitions are discussed before the actual output signals are described. With the
exception of a system reset, all output parameters are changed only after both a valid address
has been detected and a register command has been received. Additionally, the outputs may
change many times during the period following a valid register command.

The command sequence controller remains in state O until a valid address is present
on the command bus. The valid address signal from the address comparator allows the
command sequence controller to shift to state 1. The command sequence controller remains

in state 1 for all subsequent address commands until a register command (either pulse width

or repetition period) is present on the command bus. The register command causes the

32

sequence generator to shift to state 3. State 2 is a transient condition that is not used by the
command sequence controller and any occurrence of state 2 resets to state 0. The command
sequence controller remains in state 3 until an address is present on the command bus. The
address command and bus valid signal causes the command sequence controller to shift to
state 0. Notably, if the address command is also a valid address, the command sequence
controller will shift from state O to state 1 on the next clock cycle.

As mentioned above, all output signal adjustments (except system reset) are made
only when the command sequence controller is in state 3. This discussion refers to a
command that sets either register generically as a "register command" since the pulse width
and repetition period registers operate identically. When a valid register command sets the
pulse width to zero, the command sequence controller immediately clears the enable output
signal, thus immediately stopping tactile stimulus. Typically, a register command is
received that does not match the current register value. This register mismatch triggers two
actions to occur simultaneously. First, it clears the enable output signal, causing the Tactor
Power Controller to clear its counters in preparation for a change in wave shape parameters.
In addition, the register latch signal is produced, ordering the appropriate register to lock the
commanded wave parameter into the storage register. As soon as the new register value has
been latched, the register-difference flag changes to indicate the values now match. This
change in the register-difference flag clears the latch signal and sets the output enable signal,
causing the Tactor Power Controller to restart wave shape generation with the new wave
shape parameters. In the event that a register command is received that matches the current

register value, the latch signal is not needed and the output enable signal does not cycle.

33

Effectively, the matching register command is ignored since it provides no change to the

current operating condition.

5. Address Comparator

The address comparator provides indication when the valid command byte is an
address command that matches either the address reference or the all call address. Ihput to
the address comparator comes from the command bus and the address held in the addréss
reference. The address comparator produces the valid address signal that is used by the

command sequence controller. Table 11 summarizes the signals used and produced by the

address comparator.

Address Comparator Input And Output
Input ' Output
Signal Source Signal Destination
command data latch valid address | command sequence
bus controller
address address reference

Table 11. Summary of Signals for the Address Comparator.

6. Address Reference

The address reference maintains the address assigned to the attached tactor. The
input source for the prototypical implementation comes from external jumper connections

on the TIC. The output is a buffered reflection of the settings. Table 12 summarizes the

signals used and produced by the address reference.

34

Address Reference Input And Output

Input Output
Signal Source Signal Destination
input address |address input pads | address address comparator

Table 12. Summary of Signals for the Address Reference.

7. Pulse Width Register

The pulse width register stores the most recent pulse width setting received by the
TIC. This setting is used by the Tactor Power Controller module to create the stimulus
waveform. The pulse width register receives input from the command bus, a latch signal
from the command sequence controller, and the system reset. The register produces an
output pulse width value used by the pulse width down counter and a pulse width difference
signal used by the command sequence controller. Table 13 summarizes the signals used and

produced by the pulse width register.

Pulse Width Register Input And Output
Input Output
Signal Source Signal Destination

command data latch pulse width | pulse width down
bus* value counter
latch command sequence |pulse width |command sequence

controller difference controller
reset system
* only the bit positions representing the embedded register value

Table 13. Summary of Signals for the Pulse Width Register.

The pulse width register continuously provides a difference signal indicating when
the stored six-bit value is different from the lowest six bits on the command bus. This

output is used by the command sequence controller to regulate the latch signal and to reset
35

waveform generation by the Tactor Power Controller. When a latch signal is received from
the command sequence controller, the pulse width register locks the timing value held in the
Jowest six bits of the command bus into its storage register. When latching is complete, the
difference signal indicates a match, providing a feedback signal to the command sequence
controller. When a reset signal is received, the pulse width register clears all output bits to a
logic "0." -

8. Repetition Period Register

The repetition period register stores the most recent repetition period setting received
by the TIC. This setting is used by the Tactor Power Controller module to create the
stimulus waveform. The repetition period register receives input from the command bus, a
Jatch signal from the command sequence controller, and the system reset. The register
produces an output repetition period value used by the répetition period down counter and a
repetition period difference signal used by the command sequence controller. Table 14

summarizes the signals used and produced by the repetition period register.

Repetition Period Register Input And Output
Input Output
Signal Source Signal Destination
command data latch repetition repetition period
bus* period value |down counter
latch command sequence | repetition command sequence
controller period controller
difference
reset system
* only the bit positions representing the embedded register value

Table 14. Summary of Signals for the Repetition Period Register.

36

The repetition period register continuously provides a difference signal indicating
when the stored six-bit value is different from the lowest six bits on the command bus. This
output is used by the command sequence-controller to regulate the latch signal and to reset
waveform generation by the Tactor Power Controller. When a latch signal is received from
the command sequence controller, the repetition period register locks the timing value held
in the lowest six bits of the command bus into its storage register. When latching is
complete, the difference signal indicates a match, providing a feedback signal to the
command sequence controller. When a reset signal is received, the repetition period register
clears all output bits to a logic "0."

9. Power Control Logic

The power control logic component controls implementation of the tactile stimulus.
Input to the power control includes an enable output signal, a pulse-width-equals-zero
signal, and a repetition-period-greater-than-one signal. The power control logic produces an
enable power signal, a clear counter signal, and a load counter sigﬁal. Table 15 summarizes

the signals used and produced by the power control logic.

37

Power Control Logic Input And Output

Input Output
Signal Source Signal Destination

enable output | command sequence | enable power | power oscillator
controller

pulse width | pulse width down clear counter |pulse width down

equals zero | counter counter, repetition
period down counter

repetition repetition period load counter | pulse width down
period down counter counter, repetition
greater than period down counter
one

Table 15. Summary of Signals for the Power Control Logié.

When the enable input signal from the command sequence controller is not enabled,
the power control logic provides a clear signal to both down counters. The clear signal
Jocks both counters at zero. When a pulse-width-equals-zero signal is present, the power
control logic maintains the enable-power at logic "0," causing the power oscillator to block
the oscillation signals from reaching the current switching network. When the repetition-
period-greater-than-one signal is low, the power control logic signals the down counters to
reload the stored register values on the next clock cycle.

10. Power Oscillator

The power oscillator controls transmission of the signals that drive the switches in
the current switching network. Input to the power oscillator is an enable output signal and
the oscillation frequency. The power oscillator produces the signals that enable the current
switching network to create the bi-directional current for the attached tactor. Table 16

summarizes the signals used and produced by the power oscillator.

38

Power Oscillator Input And Output
Input Output
Signal Source Signal Destination
enable power | power control logic | power switch | current switching
set 1 network
oscillation clock divider power switch | current switching
frequency set 2 network

Table 16. Summary of Signals for the Power Oscillator.

The enable power signal controls the passage or blocking of the oscillation signals.
When enable power is high, the power oscillator passes the oscillation frequency signals to
the current switching network causing the tactors to vibrate. When enable power is low, the
oscillation signals are blocked and there is no tactile stimulation. The oscillation frequency

is complemented to provide alternating signals that produce the bi-directional switching

characteristic needed for the current switching network.

11. Pulse Width Down Counter

The pulse width down counter provides the timing that defines the activation interval
for the tactor. Input to the pulse width down counter is the stored pulse width value, a load
counter signal, a clear counter signal, and the counter clock. The pulse width down counter

produces the pulse-width-equals-zero signal. Table 17 summarizes the signals used and

produced by the pulse width down counter.

39

Pulse Width Down Counter Input And Output

Input Output
Signal Source : Signal Destination

pulse width | pulse width register | pulse width | power control logic
value equals zero

count clear | power control logic

count load power control logic

clock clock divider

Table 17. Summary of Signals for the Pulse Width Down Counter.

When the count clear signal is present, the pulse width down counter immediately
clears its count to zero and produces the pulse-width-equals-zero signal. The count clear
signal takes precedence over all other inputs. When the count load signal is present, the
counter loads the value that is stored in the pulse width register on the next clock cycle. The
clock signal is provided by the 62.5 Hz output of the clock dividef.

12. Repetition Period Down Counter

The repetition period down counter provides the timing that defines the repetition
interval for the tactor. Input to the repetition period down counter is the stored repetition
period value, a load counter signal, a clear counter signal, and the counter clock. The
repetition period down counter produces the repetition-period-greater-than-one signal.

Table 18 summarizes the signals used and produced by the repetition period down counter.

40

Repetition Period Down Counter Input And Output

Input Output
Signal Source Signal Destination
repetition repetition period repetition power control logic
period value |register period greater
- than one
count clear | power control logic

count load power control logic

clock clock divider

Table 18. Summafy of Signals for the Repetition Period Down Counter.

When the count clear signal is present, the repetition period down counter
immediately clears its count to zero and clears the repetition-period-greater-than-one signal.
The count clear signal takes precedence over all other inputs. When the count load signal is
present, the counter loads the value that is stored in the repetition period register on the next
clock cycle. The clock signal is provided by the 62.5 Hz output of the clock divider.

13. Clock Divider

The clock divider uses a 14-stage counter to generate the frequency signals for tactor
oscillation and proper down counter timing. Input to the clock divider is from the system
clock and the reset signal. Output from the clock divider includes signals at 250 Hz, 125
Hz, and 62.5 Hz. The 1 MHz system clock is divided by two at each stage of the clock

divider. Table 19 summarizes the signals used and produced by the clock divider.

41

Clock Divider Input And Output

Input Output
Signal Source Signal Destination
clock clock input 62.5Hz pulse width down

counter, repetition
period down counter

reset System . 125 Hz power oscillator

250 Hz power oscillator

Table 19. Summary of Signals for the Clock Divider.

F. STRUCTURAL COMPONENT DESIGN

After completing the behavioral design, each component was converted to a circuit
using logic gates. Most of the design conversion was very straightforward using the digital
design techniques described in Reference 1. To ensure proper operation of the state
machine in the command sequence controller, many of the advanced state-machine design

techniques presented in Reference 8 were used.

The structural design process was performed in two distinct steps, basic structural
implementatioﬁ and component optimization for minimum power and size. The initial
structufal designs were fully tested using Ven'log® models; the model source code is
included in Appendix A. The optimized structural designs were iteratively developed and
tested using SPICE. The final circuit schematics are included in Appendix B and the SPICE

models are included in Appendix C.

The circuit optimization techniques are illustrated below and the design of each
component is described in the following subsections. Specific optimization efforts are

discussed with each affected component.

42

1. Structural Circuit Optimization

Two methods used to reduce the power consumption and physical layout area are
logic function minimization and negative logic. Function minimization uses logic analysis
to determine the smallest sum-of-products equation to realize a given function. Negative
logic results in reduced power consumption by reducing the total number of transistors.
Both techniques require less layout area on the microcircuit since they result using fewer,
smaller logic components. Figure 13 illustrates two possible structural implementations of
the address comparator. AThe circuit onlthe left uses conventional logic while the circuit on
the right makes extensive use of negative logic. Table 20 summarizes the reduction in
layout area, power consumption, and propagation delay. A very noticeable ad\}antage of
using negative logic is the improved signal propagation speed. The improved response time

comes primarily from reducing the number of transistors in the signal path.

Alternate Logic Implementations
T

ol DY
jD :D‘ jD D

D D

ot B St
— | |

> 5

Figure 13. Alternate Structures for Realizing the Address Comparator.

:}.

43

Area [umz] Transistors Delay [nS]*
Conventional Logic 29,500 128 2.96
Negative Logic 25,900 112 1.88
Difference 3,600 16 1.08
% Difference 122% | 12.5% 36.5%

* Delay time was calculated using SPICE to simulate the actual CMOS
FET implementation of each circuit.

Table 20. Comparison of Alternate Logic Designs.

2. Twelve-Bit Input Shift Register

The twelve-bit shift register consists of twelve D-flip/flops wired in series. All
flip/flops share a common clock signal that is driven directly from the input clock signal.
The system reset drives the clear signal for the lowest two D-flip/flops. The highest ten
flip/flops are cleared by either the system reset or the partial clear signal that comes from the
input validity checker. The schematic for the optimized circuit is included as Figure 99 of
Appendix B.

3. Eight-Bit Data Latch

The eight-bit data latch consists of eight D-ﬂip/ﬂ0p§ wired in parallel. All flip/flops
share a common latch signal provided by the input validity checker. The system reset drives
the clear signal for all of the D-flip/flops. The schematic for the optimized circuit is
included as Figure 100 of Appendix B.

4. Input Stream Validity Check

The input stream validity checker consists of a packet-format section, latch-signal
driver, bus-data-valid driver, and partial-clear driver. The packet-format section determines

if the stream of input bits is properly formatted by ANDing the two stop bits, the parity

44

indicator, and the complement of the start bit. The parity indicator is simply an XOR of all
data bit positions with the parity bit position. The latch signal is created when the format is
correct and the clock signal is low. The bus data valid signal is driven by a D-flip/flop that
stores the format signal on the latch signal upward transition. The bus data valid signal is
cleared by either the system reset or when a "0 1" logi_c combination is detected in the two
highest bit positions of the shift register and the bus data valid signal is set. The partial clear
signal is generated when the packet format is correct and the bus data valid signal is set.

The schematic for the optimized circuit is included as Figure 101 of Appendix B. In
hindsight, it may have been more efficient to use an S/R latch for the data bus valid signal.
This option was not considered during the design evaluation but should be attempted in the
next TIC version.

5. Command Sequence Controller '

The command sequence controller consists of a state machine, two register latch
drivers, and the enable output S/R latch. The operating state is stored in a pair of D-
flip/flops. The logic that drives the state machine was derived using transition and output
analysis detailed in Chapter 7 of Reference 8. The implemented transition logic prevents
hazards and race conditions. The design also recovers from any occurrence of the undefined
state 2. The pulse width and repetition period latch signals are driven by the receipt of a
register command that does not match the currently stored value. The enable output latch is
set any time the state machine is in state 3 and there is a valid register command on the
command bl:lS. The enable output latch is reset for any change in the pulse width or

repetition period register values. The enable output signal is also immediately cleared when

45

a system reset is detected or when a valid, zero pulse width command is detected. The
schematic for the optimized circuit is included as Figure 102 of Appendix B.

6. Address Comparator

The structural design for the address comparator consists of an all call detector and
an equality test for the reference address. The all call detector simply indicates when the all
call command, "0 111111 1,"is present on the command bus. The address equality test
uses an XNOR for each bit position to determine if the command bus matches the provided
address reference. The schematic for the optimized circuit is included as Figure 103 of
Appendix B.

7. Address Reference

The structural design for the address reference in this initial prototype consists
simply of buffers from the TIC input pins. No schematic diagram is included for this
component.

8. Pulse Width Register

The structural design for the pulse width register consists of six D-flip/flops wired in
parallel and an equality test to indicate a difference between the command bus and the
stored pulse width value. All flip/flops share a common latch signal provided by the
command sequence controller. The system reset drives the clear signal for all of the D-
flip/flops. The equality test uses an XOR for each bit position to determine if the command
bus differs from the stored pulse width value. The schematic for the optimized circuit is

included as Figure 104 of Appendix B.

46

9. Repetition Period Register

The structural design for the repetition period register consists of six D-ﬂip/ﬂo;)s
wired in parallel and an equality test to indicate a difference between the command bus and
the stored repetition period value. All flip/flops share a common latch signal provided by
the command sequence controller. The system reset drives the clear signal for all of the D-
flip/flops. The equality test uses an XOR for each bit position to determine if the command
bus differs from the stored repetition period value. The schematic for the optimized circuit
is included as Figure 105 of Appendix B.

10. Power Control Logic

‘The structural design for the power control logic consists of a single inverter. This
component routes the appropriate signals between other components in the TIC circuit. The
output from the two down counters was modified to eliminate the need to invert their signals
/before sending them to the other components. The schematic for the optimized circuit is
included as Figure 106 of Appendix B.

11. Power Oscillator

The structural design for the power oscillator consists of a dual-path switch and four
signal amplifiers. The dual-path switch will either block or pass the oscillation frequency
and its complement. When the oscillation signal is passed, the four drivers provide
sufficient current to activate the switch pairs in the current switching network. The
schematic for the optimized circuit is included as Figure 107 of Appendix B.

12. Pulse Width Down Counter

The structural design for the pulse width down counter consists of six D-flip/flops

configured as a down counter and a comparison circuit to indicate when the counter value is

47

not equal to zero. The down counter has an input selector that shifts operatibn between
Zlown counting and loading the value stored in the pulse width register. All flip/flops share a
common clock signal provided by the clo;:k divider as a timing reference. The counter
output is continuously tested to indicate when the value is not equal to zero. The counter
reset circuit includes a function that stops the down counter when it reaches zero. The
counter is also reset by the count clear signal from the power control logic. The schematic
for the optimized circuit is included as Figure 108 of Appendix B.

13. Repetition Period Down Counter

The structural design for the repetition period down counter consists of eight D-
flip/flops configured as a down counter and a comparison circuit to indicate when the
counter value is not greater than one. The down counter has an input selector that shifts
operation between down counting and loading the value stored in the repetition period
register. When loaded, the repetition period value is stored in the upper eight bits of the
counter énd the lowest two bits are set to zero. All flip/flops share a common clock signal
provided by the clock divider as a timing reference. The combination of the two extra bit
positions and the same clock frequency causes the repetition period down counter to operate
at a time interval that is four times longer than that of the pulse width down counter. The
counter output is continuously tested to indicate when the value is not greater than one. The
counter reset circuit includes a function that stops the down counter when it reaches zero.
The counter is also reset by the count clear signal from the power control logic. The

schematic for the optimized circuit is included as Figure 109 of Appendix B.

48

14. Clock Divider

The structural design for the clock divider consists of fourteen D-flip/flops
configured as an up counter. All ﬂip/ﬂops share a common clock signal that is driven
directly from the input clock signal. The up counter continuously ‘acts as a frequency
divider that provides two oscillation frequencies and the down counter timing reference.
The available oscillation frequencies are 250 Hz and 125 Hz. The down counter timing
reference is 62.5 Hz. The system reset drives the clear signal for all of the D-flip/flops. The
schematic for the optimized circuit is included as Figure 110 of Appendix B.
G. ADVANCED DESIGN FEATURES

Several features of the initial TIC design provide enhanced system performance.
The first two features were included as enhancements to the minimum design specification
because they provide improved functionality while coupling easily with the conceptual
operations. The third advanced feature, an onboard reset, was included to ensure that the
TIC establishes a consistent initial condition when it is first energized. The final two
features were added for chip testing and evaluation with various tactile transmitters.

1. Multiple Command Packet Addressing

The operating-state transition definitions allow a command byte stream that includes
multiple TIC addresses. This feature allows a register command to be transmitted to several
tactors simultaneously. This capability can be used to reduce the volume of data transmitted
on the serial communication wire from the micro-controller. When commands are sent to

numerous tactors in this fashion, all tactors activate with a single, synchronized wave-shape.

49

2. All-Call Address

The command value "0 1 1 1 1 1 1 1" is reserved as an All-Call address that
produces a valid address response for all TICs. This feature is primarily intended to enable
rapid termination of all tactile stimuli. This address can also be used to test the entire
communication array.

3. Dual Reset Circuit

The analog response of the CMOS circuit components is used to produce an initial
reset signal for the first 200 nS of TIC operation. The initial reset forces all TIC elements to
establish a consistent condition when the circuit is energized. Included in the system-reset
circuit is a selectable, low-voltage reset. This reset element is included to protect the system
from erratic response caused by low input voltage. The low voltage feature can be disabled
using an external TIC jumper, if necessary, for circuit testing.

4. Selectable Oscillator Frequency

An input jumper allows selection between the two tactor-oscillation frequencies: 125
Hz and 250 Hz. This selection allows the TIC to be used with different tactors. These two
frequencies were selected because they are available in the clock divider and because they

reasonably match the input requirements of the tactors being considered for use in the

prototype system.

5. Selectable Address

By including the TIC address as an external input, a single TIC design can be used
for ali tactors in the communication array. This feature allows the greatest flexibility for

prototype testing, since it allows a single "intelligent tactor” to function in every possible

50

array position. A similar approach will likely be used in future versions to limit production
and inventory requirement to a single TIC/tactor assembly.
H. ANIMATION OF TACTOR INTERFACE CHIP OPERATIONS

As a tool to explain TIC response to command bytes, an operating animation was
developed that illustrates the changes that occur in the TIC registers and counters as a string
of commands is received. A more detailed explanation of the animation program is
contained in Appendix D.

1. TIC Visual Representation

Figure 14 shows the graphical representation of two intelligent tactors in a tactile
array. The dark gray rectangles represent the tactors. Each is labeled with its address value.
The number at the bottom of each column represents the register value for the pulse width or
repetition period. The column represents the value in the down counter associated with each
register. The horizontal bar across the bottom represents simulation time and proceeds
steadily from left to right. The rectangular bubbles above the time line are commands that

will be issued when the time reaches their position.

51

Flgure 14 i’aétile Interfacev:ﬁAnimatié‘n Bééics.

2. Animation Color Scheme

Figure 15 shows the animation in progress. The tactor rectangles change in color to
represent the state of the Command Decoder and Controller. When a valid address is
received, the TIC shifts to state "B" and the tactor color changes to yellow. When a register
command is received by a tactor in state "B," the register is set to the commanded value, the
TIC shifts to state "C," and the tactor color changes to red. When any address is received by
a tactor in state "C," the TIC shifts to state "A" and the tactor color changes back to gray.
The pulse width down counter value is represented by a green column in the area below the
"PW" label. The repetition period down counter value is represented by a blue column in
the area bélow the "RP" label. During operation, the green column drops four times as fast
as the blue column. As long as the green pulse-width column is not zero, the associated

tactor vibrates. When the green pulse-width column reaches zero, the vibration stops.

52

When the blue column is not greater than one, both down counters load the stored register
value. Thus, when a zero repetition period is assigned, the pulse width column reloads on
every clock pulse and does not decrease in value. When the repetition period register is
greater than zero, both counters decrease until they are reloaded at the repetition period

down counter value of one.

Figure 15. Tactile Interface Animation in Progress.

53

IV. TACTOR INTERFACE CHIP VLSI IMPLEMENTATION

In preparation for the VLSI implementation of the Tactor Interface Chip, the specific
system priorities must be examined. These priorities then work together to define the
CMOS FET size. After determinihg the optimum FET size for the application, the elements
must be built to support basic logic functions. These logic elements are then combined to
form the larger components. The components are then assembled into the functional
modules and, finally, into the composite system. After the chip input and output are added,
the chip is ready for comprehensive testing and fabrication. This chapter covers the entire
VLSI implementation process.

A. COMPETING VLSI DESIGN CONSTRAINTS

During VLSI design, many requirements are juxtaposed. High speed transistors are
physically larger and consume more power. Conversely, minimum sized transistors require
the least amount of power but their speed may be insufficient when driving large
interconnect lines or numerous down-stream components. These factors were balanced to
meet the design requirements of the Tactor Interface Chip.

1. Size

Funding limits forced microchip size to be a primary constraint. Chip size primarily
bounds the number of circuit components because component interconnections consume the
majority of VLSI layout area. This sharply limited circuit complexity and fundamentally
affecfed many of the design decisions made in the previous chapter.

2. Power

Each TIC must draw minimum current from the battery-powered system since the

tactile interface is a stand-alone bridge between the information source and the human user.
55

Using the smallest possible CMOS FETs throughout the circuit minimizes total power
consumption. Aggressively simplifying the logic stfucture further reduced power
requirements while increasing response spéed.

3. Speed

Small transistor size adversely inﬂuenpes response time. Minimum transistor size is
sufficient at a 1 MHz clock speed unless long interconnects or several components must be
driven. Individual elements were resized based on their output loading.

B. CMOS FET TRANSISTOR SIZING

1. Determining PFET Size From NFET Size

Based primarily on power cpnsiderations, minimum size CMOS FETs were
examined to determine their suitability for the TIC application. Beginning with the absolute
minimum transistor width of 3 um, the response of an inverter was evaluated. When sizing
FETs the mobility of the charge carriers must be consideréd. PFET width must be
significantly larger that NFET width to balance system output since the majority carrier for
NFETs are electrons (high mobility) and the majority carriers for PFETs are holes (low
mobility). Figure 16 shows the effect of using different size PFETs with a minimum size
NFET. The ideal sizing produces an inverted output of 2.5 volts as the input sweeps
through 2.5 volts. By examining Figure 16, a PFET width of 7 um most closely achieves
the ideal condition. However, a more conventional PFET width to NFET width ratio of 2.0

" was used for this VLSI layout; making PFETs 6 um wide. Checking the response in Figure

16 shows that a width of 6 um is still very close to the ideal response.

56

PFET Size Evaluation for 3 um NFET

O 4um T
x 5um
o 6um
¢ 7um 1
v 8um

.............................

input voltage [V]

Figure 16. Inverter Response for Various PFET Widths.

2. Basic Response Timing

Having determined the PFET size needed with a minimum size NFET, response
timing had to be verified to ensure the system would transmit the signals quickly enough to
support a 1 MHz clock speed. This measurement was accomplished by simulating a series
of inverters and measuring transmission delay between two inverters near the series end as
illustrated in Figure 17. Figure 18 shows the inverter response for the delay circuit and

Table 21 provides the actual delay values calculated from the simulation.

57

Measuring Signal Delay

input>> >]>]>

measured
delay

Figure 17. Delay Circuit for Measuring Inverter Response.

Inverter Transmission Delay

voltage [V]

: ; L I L
0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time [nS]

2.2

Figure 18. Inverter Transmission Response for Delay Circuit.

Output Transition Delay
High to Low 0.2564 nS
Low to High 0.2240 nS

Table 21. Inverter Delay Summary.

58

B. LOGIC ELEMENT DESIGN

Using a 6 um PFET width and 3 um NFET width, the basic logic elements were
designed to support VLSI implementation of the structural TIC design. Appendix E
contains the specific design and evaluation data regarding all logic elements. Table 22
presents a summary of logic element response for each design. The delay values were
obtained while simulating an output loading of 0.1 pF; equating to 4 down-stream
components. When comparéd to the 500 nanosecond half-cycle of the 1IMHz clock, even the
worst transmission delays allow numerous components to be connected in a series layout

while still providing adequate stabilization time.

Component Transistors | Slowest Delay | Peak Power
Inverter 2 0.83 nS 2.1 mW
2-input NAND 4 1.33nS 23 mW
3-input NAND 6 1.69 nS 2.7 mW
4-input NAND 8 222 nS 2.7 mW
2-input AND 6 1.31nS 2.3 mW
2-input NOR 4 1.51nS 1.6 mW
3-input NOR 6 2.10nS 1.2 mW
2-input OR 6 1.47 nS 2.5 mW
2-input XOR 12 1.68 nS 32mW
2-input XNOR 12 1.68 nS 3.2 mW
D flip-flop with | 24 3.42nS 3.4 mW
nClear

Table 22. Component Design Summary.

C. COMBINED LOGIC COMPONENT CONSTRUCTION
The storage registers, down counters, shift registers, and other components were

developed using the structural designs presented in Appendix B. The logic element layouts

59

were combined to create rows of elements with a common power and Qound line. This
configuration produced the most compact layout of the larger components. The logic
elements were arranged to provide the shortest connection distance between elements and
signals were routed primarily on the first metal layer or the polysilicon layer. Signals that
extended beyond adjoining elements were typically routed vertically on the second metal
layer, then routed horizontally on the first metal layer, and again vertically on the second -
metal to their destination. This routing direction segregation reduced wasted space between
component rows and helped to maintain a very tight layout. |
E. MODULE ASSEMBLY

The components were arranged on the VLSI layout area to minimize the distance
between signal generation and signal use. Sets of signals were routed together to maintain
an orderly structural layout. The internal command bus was routed between the components
that accessed its values, minimized the bus size and its drive loading. The modules were
built to obtain a consistent length. The modules were then attached to the common power
and ground buses running vertically along both sides.

F. INPUT AND OUTPUT CONSIDERATIONS

Movement of input signals to the TIC and output signals to the current switching
network required an arrangement of input and output pads. These pads are bonded to tiny
wires that connect the chip to the DIP package. A power and ground ring encircle the chip
just inside the connection pads. These rings provide voltage surge protection through diodes
designed into the /O pad structure. In addition to the power and ground pads that feed the

outer rings and the chip components, three pad types are included in this design.

60

A standard input pad is used to translate the data and clock inputs onto the lines
connecting them to the TIC circuit. These pads are comprised of two inverters that act as a
signal buffer and amplifier.

A standard output pad is used to convert the TIC output into a signal strong enough
to drive the current switches. Again, these pads are made using two inverters that are
specifically sized to provide the proper amount of current to activate the switching network.

A custom input pad was developed to act an input jumper signal. The pad was held
high through a diode and resistor combination, providing a logic "1" to the circuit unless the
pad was jumped to ground. When this type of pad was grounded, a logic "0" was provided
to the circuit. These pads were used for creating the address assignment jumpers and the
frequency and reset selection jumpers.

G. COMPLETE TACTOR INTERFACE CHIP

When the pads were all combined with the entire system layout, the TIC was

complete. Figure 19 shows the layout for the entire TIC. Using the layout map provided in

Figure 20, the relative size and placement of each component is clearly visible.

61

g umapaiagoze yopeboana Ry

5 UARe Fesanaiedyoviacnt snse s

Sremessuupelviannentensusnresa

A uasRgeReEmR

%

e
SR

97

¥

%

,
Z
7

'J%:’/.

KO T ST T
i, SRSSEEE——

Roeresven sy ssexnamAy

%zm
et
2

&

2

Figure 19. Completed Tactor Interface Chip VLSI Design.

62

Address Assignment
Jumpers (6-3)

Address Assignment
Jumpers (2-0)

geiariy Hen TR

Serial Data keceiver

Input Validity Check

12-bit
Input Shift Register

8-bit Data Latch
Command Decoder and Controller

o Address gz::::::
s Comparitor Controller

™ Pulse Width Repetition Period
----- Register Register

:::::

||||||||||||||||||||||

Tactor Power Controller

Pulse Width Repetition Period
Down Counter Down Counter

Clock Divider

...

Reset and
Frequency Control

Tactor Switching Signals
(Output Drivers)

Figure 20. Layout Map of the Tactor Interface Chip VLSI Design.

H. COMPREHENSIVE SYSTEM TESTING

When the entire layout was complete, several simulations were performed on the
extracted model. These simulations each ran for approximately one day and generated
nearly one gigabyte of data. The results presented in Figure 21 illustrate that the TIC circuit
functions as designed and produces the alternating switch control signals required to drive

the tactor current network.
63

Complete TIC Extracted VLSI Simulation

busValid

countClear

pwria

pwr2a

_.J.__.._.___l._.__J_ll : UL_JJ_

L 1] Il
0 5u 10u 15u 20u 25u

Figure 21. Simulation Results from the Complete TIC Design.

64

V. PARALLEL PORT DATA MODULATOR

With the VLSI layout complete and gubrnitted for fabrication, chip testing and
demonstration became the highest priority. Once fabricated, the most realistic test would be
to connect the TIC to an actual serial communication line and measure the current switching
signals produced as a result of issuing command bytes to the TIC. Additionally, an
apparatus that could drive the TIC in a manner similar to its intended implementation would
serve as a demonstration platform for the completed tactile interface.

The general notion of using a standard computer to produce the serial bit stream
required for TIC operation was appealing for many reasons. The primary motivation for PC
use was the portability of such a system; system design could allow using any PC, reducing
system unique equipment to a small hardware component and the tactile array.
Additionally, the parallel port on a computer closely represents the operation of a
microprocessor data bus. This similarity to a data bus provides a level of design abstraction
that would ease adaptation of the command modulator to work with any micro-controller.

This chapter presents many of the aspects in the development, fabrication, and
testing of the Parallel Port Data Modulator. After introducing the conceptual design, parallel
port transfer characteristics and modulator design specifics are discussed. Next, the circuit
board layout and manufacture for the modulator are included. The command software
driver is introduced and, finally, system testing and modifications are discussed.

A. CREATING A SERIAL COMMAND STREAM

A flexible and effective method to issue commands to the intelligent tactor is to

write a computer program that presents the byte command to a modulator attached to the

computer parallel port. The modulator, shown conceptually in Figure 22, reads the byte
65

presented at the parallel port and latches it into a transmission buffer. The hardware
interface then signals the computer that the command has been read to allow computer
processing for the next command byte. The modulator transmits the command using the

required serial data packet format. TIC synchronization and timing is provided using the 1

MHz clock.
Computer

: Data Latch,

Iila:drvfsrare Equality, and
nterface Parity Logic
Output Control Data Select
Clock
Tactors

Figure 22. Command Modulator Conceptual Design.

B. PARALLEL PORT INTERFACING AND CONTROL
The parallel port on a computer is used to communicate data one byte at a time to an

attached peripheral. Reference 1 contains an extensive description of parallel port

66

communications. The transfer of data through the parallel port is defined by IEEE standard
1284, "Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for
Personal Computers.” The parallel port consists of 17 signal lines that are divided into three
categories: data (8 lines), control (4 lines), and status (5 lines). The remaining eight lines are
ground connections. Table 23 summarizes the signals with their descriptions and connector
pin assignments. Figure 23 illustrates the parallel port connector and pin numbering scheme

as viewed on the back of a computer.

Category | Name Pin | Direction | Description

Data data 2 [In/Out Active high. Data transmission
data 1 3 lines. Operate only in output
data?2 4 direction for some communication
data 3 5 modes.
data 4 6
data 5 7
data 6 8
data 7 9

Control | nStrobe 1 {Out Active low. Indicates valid data is

on the data lines.

nAutoLF | 14 Active low. Instructs printer to
automatically insert a line feed for
each carriage return.
nlnit 16 Active low. Resets device.
nSelectln | 17 - | Low signals device it is selected.
Status nError 15 |In Low indicates an error exists.
Select 13 High indicates device is online.
PaperEnd | 12 High indicates printer is out of
paper.
nAck 10 Low indicates last byte was
- | received.
Busy 11 High indicates device is busy.

Table 23. Standard Parallel Port Signal Definitions and Pin Assignments.

67

DOOO0OOOO0000O0
0O0000000000Q,

Figure 23. Parallel Port Connector with Pins Numbered.

Parallel port data transfer follows a specific procedure for every byte sent to the
attached peripheral. First, the port status is checked to ensure that the peripheral is not busy
and no errors are present. The data byte is then placed onto the data pins and the strobe is
activated to indicate that the data on the data lines is valid. The strobe is held active until an
acknowledgement is received from the peripheral that indicates data receipt. This process
continues until all bytes have been successfully transmitted.

C. MODULATOR DESIGN SPECIFICS.

The hardware interface of the command modulator uses the eight data lines, strobe
signal, acknowledge signal, and busy status. When the computer presents a byte to the
modulator, it issues a data strobe. The modulator detects the strobe and activates the busy
flag to prevent other bytes from being transmitted. Then, the command is latched into the
buffer and, when the buffer value matches the input command, an acknowledgement signal
is sent to the computer. The modulator then cycles through the data packet format using an
internal state machine. Serial bits are placed on the TIC communication bus on the negativ¢
clock transition to ensure they are stable when latched at the TIC on the positive clock cycle.
The start bit is transmitted first, followed by the command byte proceeding from the most
significant bit to the least significant bit. The parity bit and stop bit are then sent,
completing the cycle. After the stop bit is sent, the busy signal is cleared to allow the next

byte to be latched into the modulator buffer.
68

The logic functions for the command modulator were created using Programmable
Logic Devices. PEEL 18CV8P PLDs were used to implement the logic functions because
they were available in the research labératory. The choice to use these chips directly
influenced the method of implementing the conceptual design shown iﬁ Figure 22. The
design requires the buffer to produce an equality function and parity calculation. The
equality function triggers the acknowledgment signal that is fed back to the computer.
Unfortunately, the 18CV8P chips have insufficient logic capacity to perform all of these
functions on a single chip. In fact, to create a discrete buffer, equality, and parity functions
requires three individual.chjps. However, these functions can be realized with two PLDs by
creating a 4-bit latch that includes partial equality and parity calculations. Using equality
and parity inputs, the two cascaded chips will perform all three functions.

A more detailed discussion of the Parallel Port Data Modulator design is included in
Appendix F. The appendix contains the Ven'log® modeling source files and the ABEL™
logic definitions used to create the required JEDEC format data files for PLD programming.
D. CREATING A PRINTED CIRCUIT BOARD LAYOUT

The Parallel Port Data Modulator physical characteristics were generally defined by
the system goals. The command modulator needed to be a small, self-contained device that
connected directly to a computer parallel port thus compact board size was a high priority.

The basic component layout was conceptualized as the PLD programs were being

developed. Figure 24 illustrates the layout for the command modulator components. The

system consists of a parallel port connector, four 20-pin DIP sockets, one 8-pin DIP socket,
a wiring harness connector, and power connections. The complete system measures about

2!/, inches by 2'/, inches and uses a battery pack of four AA batteries.

69

+5V e 0000600
Connector
gnd ® to Tactors

Es to 1 Multiplexer| p State Control
> 4 bit Register > 4 bit Register

Parallel Port Connector

\

Figure 24. Parallel Port Modulator Component Layout.

The PLD logic programs were developed first to ensure the required functions
would fit on four chips. After the chips performed as required, adjustments to the chip pin
assignments and design were made to support the desired circuit board layout and to
simplify signal routing on the board. The signal and power lines were then routed on each
layer of the two-layer board. Figure 25 and Figure 26 show the layout and routing of the
manufactured circuit board for the top and bottom layers, respectively. For consistency,
power and ground were routed exclusively on the bottom layer and data signals were routed
primarily on the top layer. In hindsight, a bettér layout plan would have considered the
solder connections for each component to determine which layer would be best for the
signal to reach the pad. Soldering was typically easier to perform for bottom-layer signal

pads because the wiring harness connector and DIP sockets were mounted to the top layer.

70

T

/-—-O

OOOOQOOQ"___O/OOOO 00.

90000 HOGOO 0...

mzx%-w N

000.\0 00060000000

4

HOOOOOGOGOGSISO HOGOGOGGOGOISIOS

Lot N\

H000000909 HOO0OOGOIOIOOEQS

S

Figure 26. Parallel Port Modulator Bottom Layer Routing.

71

E. PRINTED CIRCUIT BOARD MANUFACTURING

Prototype printed circuit boards can be manufactured from a copper-coated insulator
board by removing the copper from areas around the desired conductors. Two processes
exist for copper removal: chemical etching and machining. The chemical removal process
uses a resistivg mask to protect the desired conductor areas while immersing the board in a
chemical to remove the copper in the unprotected areas. The machining process uses a
digitally controlled milling machine to mechanically remove the copper around the
conduction paths to isolate the conductor from the remainder of the board. The chemical
process was used in the first attempts to manufacture the Parallel Port Data Modulator. The
rather crude masking methods used in the process produced marginal results. The milling

process was then used with much greater success.

To produce a circuit board using the machining process, a GERBER data file
containing the layout and routing data is necessary. The GERBER file is produced using
circuit board layout software. EasyTrax (ver 2.06) by Protel International Pty. Ltd. was used
to layout and route the command fnodulator. When all layout and routing was complete,
EasyTrax was used to produced GERBER output files for the top and bottom layers.

A digital milling machine made by LPKF CAD/CAM Systems, Inc. was used to
produce the circuit board. This milling machine is designed specifically for making
prétotype boards. The CAD/CAM package includes IsoCAM software that calculates
isolation channels from the GERBER files and drives the milling machine when design
processing is complete. When manufacturing the board, IsoCAM first prompts the user to
install a drill bit into the milling spindle to bore the holes for component mounting. Next,

the appropriate cutter must be installed to produce insulation gaps around all conductors.

72

After the top layer is machined, the board must be flipped and aligned in preparation for
machining the bottom layer. Figure 27 shows the top layer of the circuit board produced
using the machining process. Note that the machining process does not remove the copper

in the unused areas of the board unless specifically required.

~

Figure 27. Command Modulator Top Layer after Machining.

F. PRiNTED CIRCUIT BOARD ASSEMBLY

After fabricating two copies of the circuit board, the connectors and DIP sockets
were soldered onto each board. It was at this point that the cost of not routing signals to the
bottom contact pads was fully realized. The para]lel port connector was easy to attach since
the board thickness matches the spacing between the connector solder lugs. By slightly
elevating each DIP socket, soldering the top-layer connection pads was made easier. On the
other hand, the plastic edges on the connector for the tactor array wiring harness had to be

carved to allow access to the soldering pads. Once the solder connections were made,

73

command modulator assembly was completed by placing the PLDs and crystal oscillator

into their sockets. Figure 28 shows a completed Parallel Port Data Modulator after full

assembly.

Lo PEELISCYRY

|

Figure 28. Fully Assembled Command Modulator.

G. SOFTWARE TO DRIVE THE COMMAND MODULATOR

For proper operation, the host computer must provide the command bytes to the
modulator. The C++ programming language was used to write a driver program to facilitate
issuing commands to the modulator through the parallel port. The program requests an
input command and waits for a user response. When a response is detected, the program
places the byte on the parallel port and waits for peripheral acknowledgement. Once

acknowledgement is received, the program requests another command from the user. The

74

program was written for the DOS operating system to allow use with older computers. A
more extensive command transmission program description and C++ source code are
included in Appendix G.
H. COMMAND MODULATOR TESTING

After manufacture and assembly, the command modulator was tested to ensure
proper operétion. With an oscilloscope connected to the clock and data lines of the wiring
harness, the command transmission software was used to issue commands to the tactile
array. The oscilloscope measured the output waveforms. Figure 29 and Figure 30 show the
oscilloscope displays after issuing a 19 and a 218 command respectively. The images show
that the command byte is transmitted in the required serial packet format with the
communication bus changing value on the negative clock transition. The apparent

instability of the plock pulses is actually being caused by a noisy data probe.

Figure 29. Command Modulator Output for 19 Command.

75

Figure 30. Command Modulator Output for 218 Command.

I. MODIFICATIONS TO THE MODULATOR DESIGN

During initial testing of the command modulator, it was discovered that several
copies of the command packet were being transmitted for eéch ordered command. This
system response was a result of the parallel port speed for the computer being used to issue
commands to the modulator. The modulator was latching, acknowledging, and transmitting
the command before the computer was able to clear the strobe. This anomaly required

reprogramming the PLDs to delay command transmission until the computer cleared the

strobe signal.

76

VL TACTOR INTERFACE CHIP TESTING

Once the Parallel Port Data Modulator was complete, chip testing should have
centered on wiring the TIC to receive power and commands from the modulator. When the
four chips were received from fabrication, they were first inspected using a microscope to
examine the general chip condition and ensure the provided pin assignments were accurate.
The chips were then operationally tested using the command modulator but no outpuf was
produced. In order to identify the reason for improper operation, the complete circuit was
simulated again. When the design simulated properly, the chips were more closely
examined using a scanning electron microscope and some potential manufacturing problems
were identified. Charged electron imaging was then attempted without success. Further
testing is not planned for this chip.

A. VLSI CHIP RECEIPT FROM FABRICATION

Four copies of the TIC were fabricated and bonded into 28-pin DIP packages. The
chips were mounted in anti-static foam and protected by a hinged plastic box. No damage
was evident to the chips due to the packaging and shipping processes. The TICs came with
a data sheet indicating the pin assignments that resulted from packaging. Figure 31

represents the TIC schematic with the signals associated to each pin. -

77

G) .
2 S99y e Y¥ewwC 5
(e} S A WA N == O3 o]
P e e
H ON - O YU OO NGO U & QN -

Tactor Interface Chip E

A
G N BRERNERRERBYNR
9] 'Uﬁ'U'U<'ﬂw§0 (9]
e 0 [} =
3. m:rggn-aamx g_
B c 8
-~

Figure 31. Tactor Interface Chip Pin Assignments.

B. VISUAL INSPECTION

The four chips received from fabrication were inspected using a microscope to
examine the general chip condition and ensure the provided pin assignments were accurate.
The stated pin assignments were correct, but microscopic inspection of the chips revealed
several dark areas that were initially thought to be dust on the protective scratch coat. A
more detailed visual inspection subsequently indicated that some of the impurities are in the
same fabrication layer as the aluminum conductors and may even extend into the silicon
transistor areas.
C. OPERATIONAL CHECK USING COMMAND MODULATOR

After confirming pin assignments, a wire wrap test circuit was constructed to mate
the TIC to the command modulator. All connections were traced and verified prior to
energizing this single-element tactile array. When power was applied, the clock signal was
measured at the TIC and found to be correct. The serial bus was then monitored as

command bytes were transmitted to the intelligent tactor. Each command packet was

78

received as expected but the TIC failed to provide the anticipated response. After
confirming the system setup and verifying all signal paths, several more commands sets
were issued. Still, no response was obtained from the mounted TIC. A second TIC was
mounted to determine if the first chip was faulty. The same series of tests were performed
and there was no response from the second TIC. |
D. COMPLETE SYSTEM RESIMULATION

One likely cause of circuit failure could have been a faulty design. Rather than
continue with operational testing a plan was made to completely verify the TIC circuit again
to determine if a design oversight had been missed in the original testing. All original tests
were performed again on the extracted VLSI design. Every aspect of the: circuit responded
exactly as designed. Additional tests were conducted to precisely simulate the series of
commands used to operationally test the TIC. Again, the simulation responded exactly as
specified.
E. SCANNING ELECTRON MICROSCOPE INSPECTION

Access to a scanning electron microscope was obtained to investigate the TIC
response failure. During careful examination of all chips, several manufacturing problems
were detected on every chip. The left image of Figure 32 shows contamination that may be
causing a short between power and ground. Spectral analysis of this area indicated that the
contaminant contained high levels of sulfur. The right image of Figure 32 shows particulate
contamination that might be shorting between the signals on the TIC internal command bus.
Figure 33 shows areas of aluminum oxidation. Figure 34 shows a metalization failure in the
top aluminum interconnect layer that causes the metal to extend beyond its design channel.

Finally, Figure 35 shows some of the many impurities peppered throughout the entire chip

79

layout. While these manufacturing problems may nbt be the direct cause of chip failure,
they certainly indicate questionable fabrication cleanliness. The real concern is not the areas
that were examined using the scanning electron microscope. The microscopic examination
only shows problems in the visible layers at the top of the silicon wafer. If these images
reflect general fabrication quality, the most likely cause of chip inoperability is similar

impurities and failures in the lower fabrication layers.

Figure 33. Scanning Electron Microscope Images of Aluminum Oxidation.

80

Figure 34. Scanning Electron Microscope Image of Mask Failure.
| Figure 35. Scanning Electron Microscope Images of Embedded Impurities.

F. CHARGED ELECTRON IMAGING

Charged electron imaging is a method for observing the microchip using a scanning
electron microscope while the chip is energized to determine. operating conditions. The
areas of the chip that are at a higher potential appear much brighter than the areas that are
grounded. This examination provides a visual method for circuit analysis with respect to
operations and points of failure. A special circuit was built to clock one bit per second into
the TIC to support charged electron imaging. When the chip was tested using this method,

there was no visible contrast between the power and ground points. This indicates the
81

inspection procedure was more complex than initially understood. Further. investigation by
the microscope technician is in progress to support this testing in the future.

G. FURTHER TESTING

Very little further testing is expected since the TIC chip is not currently funded
research. The next generation chip should be constructed with various test points to allow

evaluation of circuit performance at different locations within the VLSI layout.

82

VII. REVISIONS TO THE COMMUNICATION PROTOCOL

The basic command structure is very efficient for communicating the essential
information for the tactile interface. Now that the first iteration is complete, the command
structure must be reevaluated for improvement with a second-generation tactile interface.
Many additional instructions could be included in the basic TIC control language. A
redefinition of the command structure will also require significant changes to the TIC
design. This chapter presents the limitations of the current command structure and suggests
arevised comﬁmd structure that will improve system response and flexibility.

A. EVALUATION OF REGISTER COMMAND PAIRS

The current command structure produces continuous tactor activation for any wave-
shape parameter pair that has a pulse width greater than or equal to four times the repetition
period. The duplication of response for different register values is an area available for
command improvement.

A constant resolution of 16 mS for pulse width and 64 mS for repetition period is
easy to implement with the first-generation down counter scheme. However, this timing
method produces an extremely wide difference for percentage Wave-shape resolution.
When operating with the maximum repetition period, the wave shape has 64 different
selections for duty cycle between 0 and 25 percent and a duty cycle resolution of 0.4
percent. However, when operating with a one-half second repetition period, the wave shape
can assume 32 different duty cycles ranging from O to 100 percent with a duty cycle
resolution of 3.1 percent. As repetition period continues to decrease, the duty cycle
resolution increases exponentially. A more consistent duty cycle resolution would better

represent the desired physical stimulation.
83

A command structure based on duty cycle rather than pulse width would improve
both concerns in the preceding paragraphs. Duplicate response to command pairs would
still occur once for 100 percent activation at each value of repetition period but all other
duplication would be limited to the minimum resolution for the controlling counter. A duty -
cycle parameter would also define a consistent duty cycle resolution at all repetition period
values. Use of 16 discrete duty cycles would provide a consistent 6.25 percent resolution

while 32 duty cycle values would provide 3.125 percent resolution.

B. TACTILE ARRAY SIZING

The original target tactile interface included forty tactors. The concept of using
multiple address values for each tactor was considered as a viable method of improving
system response by defining group identifiers in addition to the unique individual address.
Subsequent consideration of potential tactile interface applications supports forty tactors as
nearly the maximum number possible rather than an initial estimate. At the 1 MHz serial
transfer speed, the need for group addressing schemes is not critical since thirty three-byte
command sets can be issued in less than 1 mS. From these two assertions, the choice of 126
individual tactor addresses is too high and consumes too many of the 256 available
commands. Use of 63 individual addresses and one "all call" is sufficient for all expected
tactile interface applications.

C. PROGRAMMABLE OSCILLATION FREQUENCY

During the course of this research, the expected tactile transmitter has been changed
three times. Each new tactor operates best at a specific oscillation frequency and drive
current. The range of operating frequencies has been from 100 Hz to 250 Hz. Although the

current TIC design supports two discrete frequencies, a TIC capable of altering the

84

oscillation frequency using a command would be much more flexible for evaluating an array
of currently undefined tactors. |
D. COMMANDED RESET

In certain circumstances, it might be beneficial to force a system reset for an
individual or group of tactors. A dedicated reset command allows an explicit reset to be
executed by any tactor interface chip.
E. REVISED COMMANDED STRUCTURE

The command structure defined in Table 24 below balances the concerns in the

preceding sections with the 256 available byte commands.

Command Word New Meaning
00000000 Reserved -- TIC bus idle condition
00000001 Explicit System Reset.
00000010 Unused commands available for future
to use (14 values). :
00001111
00010000 Oscillation Frequency (16 discrete
to values).
00011111 |
00100000 Duty Cycle (32 values ranging from
to 3% to 100%).
00111111
01000000 Addresses for up to 63 tactors.
to
01111110)
01111111 ALL CALL -- all tactors respond
10000000 Repetition Period value 0 to 127 with
to 32 mS resolution (0 to ~4 seconds).
11111111

Table 24. Revised Command Structure.

85

86

VIII. INCORPORATION OF ADDITIONAL DESIGN FEATURES |

The initial intelligent tactor design was valuable to prove the concept is possible.
The second-generation tactile interface incorporates the revised command structure and
includes a design change to reduce current switching noise on the power line. This chapter
presents three improvements to the basic TIC design that evolved from these two issues.
A. IMPROVED BI-DIRECTIONAL CURRENT SWITCHING SCHEME

The initial method for generating bi-directional tactor current alternately activates
the diagonal switch pairs in the current switching structure of Figure 36. The implemented
switching pattern is illustrated in Figure 37. The drawback to this initial switching pattern
results from the switching characteristics of the bi-directional junction transistors. For a
brief period, both switches on each leg are conducting, resulting in a low resistance path
between the poWer line and ground. This momentary shorting action produces noticeable
transients on the power line that may affect TIC operation. A better switching pattern is
illustrated in Figure 38. The revised switching scheme prevents any shbrting action on
either leg of the current switching structure, greatly reducing the switching transients on the

power line.

87

+5V
la 2a
-
2b 1b
ond

Figure 36. Tactor Current-Switching Structure.

_1a&1bon 2a & 2b on

time —>

Figure 37. Initial Current Switching Pattern.

1a& 1bon 2a & 2bon

time —

Figure 38. Revised Current Switching Pattern.

88

B. PROGRAMMABLE OSCILLATION FREQUENCY

Incorporating a frequency register would allow the TIC to vary the tactor oscillation
frequency on the fly. Implementation of a separate frequency command is illustrated in
Figure 39. The redesigned module also includes the revised current switching pattern
discussed in the preceding section. To support the revised current switching pattern, the
oscillation frequency generator must produce a frequency eight times the desired oscillation
rate. This higher frequency then drives a loop counter whose value defines the switching

pattern.

Programmable Oscillation Frequency

Frequency Frequency
Register Counter

Frequency L_. Eight times

C it Oscillation
omparitor Reset Frequency
Y
Oscillation
Counter
enable CL_II‘I'E!‘It —9 1la & 1b
power — P Switching
— 2a & 2b
Actuator

Figure 39. Generating the Oscillation Frequency with Revised Switching.

89

C. WAVE SHAPE GENERATION USING DUTY CYCLE

Incorporation of a duty cycle parameter instead of the pulse width parameter
requires the system to calculate pulse width from the stored duty cycle and repetition period.
A possible design that uses duty cycle to create the desired wave shape is illustrated in
Figure 40. This design uses a single up counter whose value is compared to the stored

repetition period and calculated pulse width to control tactor activation.

Duty Cycle based Control
DutyCyce | | Repetiton
Reg.lster Register
Pulse Width [€— Timing
Calculator Counter
1 A
vy ¥ Yy v
. Repetition
pusewisth || "o
P Comparitor
enable Power
output > Control Reset
Logic
l enable
Power

Figure 40. Wave Shape Generation using a Duty Cycle Register.

90

D. REVISED COMMAND DECODER AND CONTROLLER

Changes to the command structure directly affect the design of the Command
Decoder and Controller module. Many changes are required in this module since the
revised commands differ significantly from the original command structure. The most
sweeping changes are required in the control signals produced by the command sequence

controller. Figure 41 illustrates the design changes required in the Command Decoder and

Controller module.

Bus
Data
Valid

Command Decoder and Controller

8 bit Command Bus Address Address
> Comparitor Reference
‘Valid Address
P
> Command
Sequence
Freq difference > Controller
pc > . RP
difference T difference
i |]
* Freq Lat:f:l v ‘
Frequency Duty Cycle < > Repetition Period
Register Register DC RP Register
Latch Latch
v v v
Frequency Duty Cycle Repetition Period Enable
Register Value Register Value Register Value Output

Figure 41. Revised Command Decoder and Controller module.

91

92

IX. CONCLUSIONS AND FURTHER WORK

Tactile communication is a viable method of conveying informatiop without
impeding other sensory inputs. In many applications, tactile messages may be most
appropriate due to their intuitive and covert nature.

Previously, tactile communication has been experimental and limited, lacking
methods to effectively implement the technology in the field. This thesis has resulted in a
communication protocol and a tactor interface chip that will advance tactile communication
beyond its current physiological research environment.

Implementation of this concept is currently awaiting successful VLSI fabrication.
As more funding becomes available, many improvements are planned for the next
generation of Tactor Interface Chips. The Naval Postgraduate School is ready to advance
this technology for mjlitary; industrial, and consumer applications.

A. TACTILE INTERFACE SYSTEM PERFORMANCE

1. Simulation Performance during Design Process

Using minimﬁm sized transistors, the tactile system has been completely designed
and simulated. The simulations operate properly at all development stages using clock
speeds of 5 MHz.

2. Parallel Port Data Modulator Performance

An interface that allows driving the tactile array from any commercial computer has
been developed to support TIC testing and demonstration. The modulator is provided
command bytes from the parallel port of a computer. The command modulator

automatically interfaces with the computer to receive the data then it transmits the data in

93

the require serial packet format. The Parallel Port Data Modulator has been manufactured
and successfully tested using simple programmable logic devices.

3. Manufactured TIC Performance

When received from the fabrication and packaging process, the TIC did not operate
as designed. In fact, the TIC produced on response at all. The entire design was simulated
again and found to work exactly as specified. Inspection of the VLSI chips using a scanning
electron microscope revealed many questionable manufacturing issues primarily regarding
cleanliness.
B. IMPROVEMENTS THAT ARE READY TO INCORPORATE

As the current chip was being fabricated, design of the next generation tactile
interface began. This new design improves the original design in several ways.

1. Expanded Communication Protocol

After careful evaluation of the original communication protocol, some basic changes
were made to make better use of the available command structure. The number of addresses
was reduced to ailow improvement in the repetition period resolution. Pulse width was
discarded in favor of a duty cycle definition. Reset and oscillation frequency commands
were also added.

2. Shaped Oscillation Current

Currently, tactor current is applied in alternating square waves. A current switching
scheme that prevents momentary creation of a low resistance path between the power and
ground would help reduce tactor switching noise. A simple method to switch the current

that avoids any potential power to ground shorting was presented. Other methods that

94

would provide a more shaped output are under consideration and may actually be used to
produce a more sinusoidal current.

3. Programmable Frequency

It is desirable to support many different frequencies because different tactile
transmitter designs operate best at specific frequencies. The current TIC design has a
frequency selection between 125 Hz and 250 Hz. Incorporating a frequency counter into the
tactile design would expand the number of supported frequencies to sixteen.
C. RECOMMENDATIONS FOR NEXT VLSILAYOUT

1. Elaporate Testing and Measurement Points

The greatest impediment to determining the reason for failure of the current chip is
the lack of any test points within the circuit. The next generation chip should include
numerous test points throughout all stages of command processing to allow signal tracing.
A method currently being considered is the incorporation of eight oﬁtputs that provide
circuit status information. By coupling these outputs to a four bit input selection, 128
parameters can be monitofed to determine chip performance.

2. Timing with Up Counters and Comparators

By using up counters and comparators for system timing, redundant down counters
can be eliminated. Counter control would be limited to a single counter while output control
would result from comparing the counter value to a stored or calculated value.
D. PROSPECTS FOR FUTURE DEVELOPMENT

1. On-board Current Switching

Due primarily to the complexity of including analog BiCMOS components on a

digital CMOS chip, the tactor current switches are housed on a separate chip with the

95

control signals being provided by the TIC. The final TIC must incorporate these current
switches onto the chip to allow embedding the TIC into the tactor casing. This revision is
fundamental to the creation of an intelligeht tactor.

2. Programmable Addressing

Use of programmable-gates would allow the TIC address to be electronically
assigned rather than set using external jumpers. Additionally, multiple address registers
could be included to allow each TIC to respond to several different addresses. Multiple
addressing would allow implementation of logical groups for more efficient communication.

3. Two-Way Communications

A change to the fundamental system paradigm might incorporate the ability for real-
time feedback to the controller. The status data could include all current TIC parameters.
Incorporating an onboard vibration sensor could also provide actual indication of tactor
operating parameters. Clearly, this change is beyond the early development requirements

for a functional tactile interface.

96

APPENDIX A. TIC MODELING USING VERILOG

A top-down design approach was used to ensure the Tactor Interface Chip
performed exactly as required. The Verilog® hardware description language, presented in
Reference 6, was used extensively for modeling all TIC components. Components at all
abstraction levels were tested using common "test benches" to ensure identical performance
between behavioral and structural definitions. Behavioral models were first designed and
tested to validate the design descriptions. The elements were then converted to structural
designs and tested with the same test bench programs to verify they performed precisely as
required.

This appendix documents the Verilog® code used in the TIC design. Each section
contains the test bench program, followed by the behavioral design definition and the
structural design definition. |

A. TACTOR INTERFACE CHIP

//***

// File: TIC_test.v

//

// Déscription: Test bench for Tactor Interface Chip
// '

// Author: Jeff Link

//***'******

‘define PRD 40
module TIC_test;

reg [0:7] words [0:17];

reg [0:7] send;

reg dIn,reset;

integer ii, 3jj: . // loop counters
wire clk,valid;

wire tPwrl, tPwr2;

Figure 42. TIC Test Bench Verilog® source code.

97

clock #(‘'PRD/2) clkl
TIC_b tic {(tPwrl,
TIC_s tic (tPwrl, tPwr2,

(clk)
//

initial begin
$display("time
$monitor ("time %04 \t
words{ 0]=8'b00011010;
words[1)=8'b10000110;
words[2]=8'b11000011;
words[3]=8'b00010010;
words|[4]=8'b10001010;
words{ 5]=8'b11000100;
words[6]=8'b00111011;
words[7]=8'b01111111;
words{ 8]1=8'b00111011;
words[91=8'b10000010;
words [10]=8'b11000001;
words[11]=8'b00011010;
words [12]=8'b10000010;

" words{13]=8'b11000001;
words [14]=8'b00011010;
words [15]=8'b10000000;
words [16]=8'b11000010;
words[171=8'b00010010;
reset = 1;

din = 1;

#(*PRD/4)

reset = 0;

#(2*'PRD)

for (ii=0; 1i<18;
send=words[ii];
#'PRD dIn = 0;

#'PRD dIn=send([jjl:
end
#*PRD dIn =
#'PRD dIn =

~*send;
1;

#(4*PRD) ;

#(1000**PRD) ;
end
#(100**PRD)
$finish;
end

endmodule

’

tPwr2, diIn,
dIn,

/7
/7
//
/7
/7
/7
/!
1/
1/
!/
//
/7
/7

clk, reset);
clk, reset);

\ttPwrl tPwr2");
%b

%b", $time, tPwrl, tPwr2) ;
valid address, execute command
put 110 in pw reg & start tactor
put 11 in rp reg & start tactor
invalid address, ignore command
don’t put 1010 in pw reg

don’t put 100 in rp reg

invalid address, ignore

all call address, execute command
invalid address, wait for command
put 10 in pw reg & start tactor
put 1 in rp reg & start tactor
valid address, execute command
same pw no need to reload

same rp no need to reload

valid address, execute command
shut off tactor

put 10 in rp reg but won’t run
invalid address, ignore command

// line idle

ii=ii+1) begin

// start bit

for (jj=0; jj<8; jji=jj+1l) begin

// data bits

// odd parity
// stop bit

$display("time %04\t sent %b",$time, send);

if (ii==2||ii==5|]ii==10]|ii==13]|ii==16)

// line idle

Figure 42. TIC Test Bench Verilog® source code (continued)

98

//***

// File: TIC_b.v

/!

// Description: Tactor Interface Chip - behavioral model
//

// BAuthor: Jeff Link

//***
. \

module TIC_b (tPwrl, tPwr2, dIn, clk, reset);

output tPwrl, tPwr2;

wire tPwrl, tPwr2;
input dIn, clk, reset;
wire [7:0] cmdBus;
wire [5:0] pwReg, rpReg;

ser_rcvr_b sr (cmdBus, busvValid, dIn, clk, reset);
cmd_decode_b cd (enPwr,pwReg, rpReg, cmdBus, busvValid, clk, ~reset) ;
pwr_cntrl_ b pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, clk);

endmodule

Figure 43. TIC Behavioral model Verilog® source code.

//*'k****-k**

// File: TIC_s.Vv

/7

// Description: Tactor Interface Chip - structural model
//

// Author: Jeff Link

//***

module TIC_s (tPwrl, tPwr2, dIn, clk, reset);

output tPwrl, tPwr2;
wire tPwrl, tPwr2;
input dIn, clk, reset;
wire [7:0] cmdBus;
wire [5:0] pwReg, rpReg;

ser_rcvr_s sr (cmdBus, busvValid, dIn, clk, reset);
cmd_decode_s cd (enPwr,pwReg, rpReg, cmdBus,busValid, clk, reset) ;
pwr_cntrl_s pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, clk);

endmodule

Figure 44. TIC Structural model Veri10g® source code.

99

B. SERIAL DATA RECEIVER

//***

// File: ser_rcvr_test.v

//

// Description: Test bench for Serial Data Receiver
/7

// Author: Jeff Link

//***

module ser_rcvr_test;

reg [0:7] woxrds [0:9];

reg [0:7] send;

wire [7:0] wv;

reg dIn,rst; .
reg [3:0] 1ii, 33: // loop counters
wire clk,valid; '

clock #(100) clkl (clk):
// ser_rcvr_b revr (v,valid,dIn,clk,rst);
ser_rcvr_s rcvr (v,valid,dIn,clk,rst);

initial begin
words[0]=8'b10101010;
words [1]1=8'b01010101;
words [2]=8'b11001101;
words[3]=8'b10110110;
words [4]1=8'00100100;
words[5]=8"'b11011011;
words[6]=8'010111101;
words [7]=8'b01000010;
words [8]=8'b00001111;
words[9]=8'b00111100;

rst = 1;
dIn = 1;
#5

rst = 0;
#500

for (ii=0; 1i<10; ii=ii+l) begin
" send=words[ii];

#200 dIn = 0; // start bit
for (jj=0; jj<8; jj=jj+1) begin
#200 dIn=send[jj]: // data bits
end
#200 dIn = ~"send; // odd parity
#200 dIn = 1; // stop bit
end
#400
$finish;

end

always @(valid) begin
if (valid)
$display("time %0d \t %b is valid",$time,v);

end

endmodule

Figure 45. Serial Data Receiver Test Bench Verilog® source code.

100

//**************************'***

// File: ser_rcvr_b.v

//

// Description: Serial Data Receiver - behavioral model
//

// Author: Jeff Link

//***

module ser_rcvr_b (cmdBus, busvValid, dIn, clk, reset);
output [7:0] cmdBus;
wire [7:0] cmdBus;
output busValid;
input dIn,’ clk, reset;
wire [11:0] gBus;

bitshiftl2_b bs0 (gBus, dIn, clk, reset, partClear):;
bitlatch8_b bl0 (cmdBus, gBus([9:2], latch, reset); .
input_valid b iv0 (latch, busValid, partClear, gBus, clk, reset);

endmodule

Figure 46. Serial Data Receiver Behavioral model Verilog® source code.

//***

// File: ser_xcvr_s.v

//

// Description: Serial Data Receiver - structural model
//

// BAuthor: Jeff Link

//**'k**

module ser_rcvr_s (cmdBus, busValid, dIn, clk, reset);
output [7:0] cmdBus;
wire [7:0] cmdBus;
output busValid;
input dIn, clk, reset;
wire {11:0] gBus;

bitshiftl2_s bs0 (gBus, dIn, clk, reset, partClear);
bitlatch8_s bl0 (cmdBus, qBus[9:2], latch, reset);
input_valid_s iv0 (latch, busValid, partClear, gBus, clk, reset);

endmodule

Figure 47. Serial Data Receiver Structural model Verilog® source code.

101

1. Twelve-Bit Input Shift Register

//***********************‘***’k***‘k*********************‘k******************

// File: bitshiftl2_test.v

//

// Description: Test bench for 12 bit Shift Register
/7 ’

// Author: Jeff Link

//***

module bitshiftl2_test;

reg latch,rst;

reg [0:7] words [0:1];

reg [0:7] send;

reg [3:0] ii, j3; : // loop counters
reg dIn, reset, partclear;

wire [11:0] bus;

clock clkl (clk); _ .
bitshiftl2_b shiftl (bus, dIn, clk, reset, partclear);
// bitshiftl2_s shiftl (bus, dIn, c¢lk, reset, partclear);

initial begin
words[0]1=8'b10101010;
words[1]=8'b10110110;
$monitor ("time %0d \t%b %b %b %¥b %b %b %b %b %b %b %b %b is on bus",

,bus[1],bus[0]);
dIn = 1;
reset = 1;
partclear = 0; :
$display("time %04 \t\t\t\t\t\t bus reset and idle",Stime);

#2 reset = 0;
#44

for (ii=0; 1i<2; ii=ii+l1) begin
send=words[ii]; ,
#9 diIn = 0; // start bit
$display("time %04 \t\t\t\t\t\t %b start bit",$time,dIn);
for (jj=0; jj<8; jj=jj+1) begin

#20 diIn=send[3jjl; // data bits
$display("time %04 \t\t\t\t\t\t %b data bit",$time,dIn);
end
#20 dIn = ~"send; // odd parity
$display("time %04 \t\t\t\t\t\t &b parity bit",$time,dIn);
#20 dIn = 1; // stop bit

¢display("time $0d \t\t\t\t\t\t $%b stop bit",$time,dIn);
#9 partclear = 1;

$display("time %$0d \t\t\t\t\t\t partial clear",$time);
#2 partclear = 0;
end

$time,bus[11],bus[10],bus[9],bus[8],bus[7],bus[6],bus{5],bus[4],bus[3],bus(2]

Figure 48. Twelve-Bit Input Shift Register Test Bench Verilog® source code.

102

#40
reset=1;
$display("time %04 \t\t\t\t\t\t reset",$time) ;
#40
$finish;
end

endmodule

Figure 48. Twelve-Bit Input Shift Register Test Bench Verilog® source code. (continued)

//***

// File: bitshiftl2_b.v

//

// Description: 12 bit Shift Register - behavioral model
7/

// Author: Jeff Link

//**'k******‘k**********‘k**

module bitshiftl2_b (bus, dIn, clk, reset, partclear);
output [11:0] bus;
reg [11:0] Dbus;
input diIn, clk, reset, partclear;
always @(posedge clk) Dbegin
if (~reset) begin
#2)
bus = bus << 1;
bus[0] = dIn;
end
end

always begin

#1
if (reset)
bus = 0;

end

always begin
#1
if (partclear & ~reset)
bus[11l:1] = 0; ,
end
endmodule

Figure 49. Twelve-Bit Input Shift Register Behavioral model Verilog® source code.

103

//***

// File: bitshiftl2_s.v

/7

// Description: 12 bit Shift Register - structural model
//

//. Buthor: Jeff Link

//***

module bitshiftl2_s (bus, dIn, clk, reset, partclear);
output [11:0] bus;
wire [11:0] Dbus;
wire [11:0] nbus;
input dIn, clk, reset, partclear;
reg hi;

dff_b ds0 (bus[0],nbus([0],dIn, hi,ntlout,clk),

dsl (bus[1l,nbus[1],bus([0].hi,nrlout,clk),
ds2 (bus[2],nbus[2],bus[1],hi,nrlout,clk),
ds3 (bus[31,nbus(3],bus(2],hi,nrlout,clk),
ds4 (bus{4],nbus[4],bus[3],hi,nrlout,clk),
dsS5 (bus[5],nbusi5],bus[4],hi,nrlout,clk),
ds6 (bus[6],nbus[6],bus[5],hi,nrlout,clk),
ds7 (bus[7],nbus([7],bus[6],hi,nrlout,clk),
ds8 (bus[8],nbus([8],bus[7],hi,nrlout,clk),
ds9 (bus[9],nbus([9],bus[8],hi,nrlout,clk),
ds1l0 (bus[10],nbus([10],bus[9],hi,nrlout,clk),
dsll (bus[11],nbus[11],bus[10],hi,nrlout,clk);

not #1 ntl (ntlout,reset);
nor #2 nrl (nrlout,reset,partclear);
initial begin
hi=1;
end

endmodule

Figure 50. Twelve-Bit Input Shift Register Structural model Verilog® source code.

104

2. Eight-Bit Data Latch

//***‘k*

// File: bitlatch8_test.v

/-

// Description: Test bench for 8 bit Data Latch
/7

// Author: Jeff Link

//*********'k***

module bitlatch8_test;

reg latch,rst;
reg [8:0] ii; // loop counter
wire [7:0]1 bus;

// bitlatch8_b latchl (bus,ii[7:0],latch,rst);
bitlatch8_s latchl (bus,ii[7:0],latch,rst);

initial begin
$monitor("time %0d \t%b %b %b %b %b %b %b %b is latched",
$time,bus[7],bus([6],bus[5],bus[4],bus[3],bus([2],bus{1],bus{0])

rst = 1;
latch = 0;
#5

rst = 0;
#5;

for (ii=0; ii<256; ii=ii+17) begin
$display("time %04 \t%b %b %b %b %b %b %b %b on bus",
Stime,1i[71,1ii(6),3ii05]1,4ii(4},1i(3]),4ii[2],14([1]7,4ii[0]);

#10 1latch = 1;
#10 latch = O;
#10 rst = 1;
#10 1rst = 0;

end

#40

$finish;

end
endmodule

Figure 51. Eight-Bit Data Latch Test Bench Ven'log® source code.

- 105

//***

// File: bitlatch8_b.v
//
// Description: 8 bit Data Latch - behavioral model

//
// Author: Jeff Link

//***

module bitlatch8_b (bus, inBus, latch, reset);
output [7:0] bus;
reg [7:0] Dbus;
input [7:0] inBus;
input latch, reset;

always @(posedge latch) begin
if (~reset)
bus = #3 inBus;
end

always begin

#1
if (reset)
bus = 0;
end
endmodule

Figure 52. Eight-Bit Data Latch Behavioral model Verilog® source code.

//***

// File: bitlatch8_s.v

//

// Description: 8 bit Data Latch - structural model
// ‘

// Author: Jeff Link

//***

module bitlatch8_s (bus, inBus, latch, reset);

output [7:0] bus;
wire {7:0] Dbus;
wire {7:0] nbus;
input [7:0] inBus;
input latch, reset;
reg hi;

dff_b db0(bus[0],nbus(0],inBus([0],hi, ~reset, latch),
dbl(busfl],nbus[1l],inBus([1l],hi,~reset, latch),
db2 (bus[2],nbus[2],inBus[2],hi, ~reset, latch),
db3 (bus[3],nbus[3],inBus[3],hi, ~reset, latch),
db4 (bus[4],nbus[4],inBus[4], hi, ~reset, latch),
db5 (bus[5],nbus[5],inBus[5],hi, ~reset, latch),
db6 (bus[6],nbus[6],inBus[6],hi, ~reset, latch),
db7 (bus[7],nbus[7],inBus[7],hi, ~reset, latch);

initial begin
hi=1;
end
endmodule

Figure 53. Eight—Bit Data Latch Structural model Verilog® source code.
106

3. Input Stream Validity Check

//***

// File: input_valid_test.v

// : '

// Description: Test bench for Input Stream Validity Check
//

// Buthor: Jeff Link

//***

module input_valid_test;

reg [0:7] words [0:2];

reg [0:7] send;

reg [11:0] inBus;

reg reset;

reg [3:0] ii; // loop counter

clock #(100) clkl (clk):
// input_valid_b iv (latch, busValid, partClear, inBus, clk, reset);
input_wvalid_s iv (latch, busValid, partClear, inBus, clk, reset);

initial begin

$display("\t\t\tlat bV pC inBus");

$monitor("time %04 \t %b %b %b $b",
$time, latch,busValid, partClear, inBus) ;

words [0]=8/b10101010;

words[1]=8'b10110110;

words [2]1=8'b01000010;

reset = 0;

#25

for (ii=0; ii<3; ii=ii+l) begin
inBus[11]=1;
inBus([10]=0;
inBus{[9:2]=words([ii];
inBus{l]=~"words{ii];
inBus[0]=1;
#200;

end

#400

$finish;

end

always @(busvValid) begin
if (busvalid)
$display("time %04\t $b is valid”",$time, inBus);
end ’

always @(posedge partClear) begin
#1
inBus(11:1]1=0;
#40
inBus[10]=1;
end
endmodule

- Figure 54. Input Stream Validity Check Test Bench Ven'log® source code.

107

//***
// File: input_valid_b.v

//

// Description: Input Stream Validity Check - behavioral model

//
// Author: Jeff Link

//***********-k***

module input_valid_b (latch, busValid, partClear, inBus, clk, reset);
output latch, busValid, partClear;
reg latch, busValid, partClear:;
input [11:0] inBus;
input clk, reset;
reg - format,clearvalid;

initial begin
latch = 0;
busvalid = 0;
partClear = 0;
clearvalid=0;
end

always'begin
#1
format = #12 (inBus[11]&~inBus[10]l1&inBus{0]&(~inBus(9:11));

clearvalid = (~inBus[l1lll&inBus[10]&busvalid);
end

always begin

#1;

latch = #2 (~(~format | clk));
end

always begin
#1
partClear = #2 (format & busValid);

end

always @(posedge latch) begin

if (~(reset | clearvValid)) begin
busvValid = #3 format;
end
end

always begin
#1
if (reset | clearValid) begin
busvalid = #1 0;
end
end
endmodule

Figure 55. Input Stream Validity Check Behavioral model Verilog® source code.

108

//***
// File: input_valid_s.v
//
// Description: Input Stream Validity Check - structural model
Y

//
// Author: Jeff Link

//***

module input_valid_s (latch, busvalid, partClear, inBus, clk, reset);
output latch, busvalid, partClear;
wire latch, busvalid, partClear;
input [11:0] inBus; ‘
input clk, reset;
reg hi;

// nor #2 nrbus(nrbusout,nBusLatch,valid,clk):;

xor #2 xrp0O(xrpOout,inBus[l],inBus(2]), // parity check

xrpl (xrplout, inBus{3], inBus([4]),

xrp2 (xrp2out, inBus (5], inBus[6]),

xrp3 (xrp3out, inBus[7], inBus{8]),

xrp4d (xrpdout, xrplout, xrplout),

xrpb (xrpSout, xrp3out, inBus([9]),

xrpb (xrpbout, xrp2out, xrp5out),

xrp7 {parity, xrpdout, xrpéout) ;

not #1 nt0(ninBusl0,inBus([10]),
ntl{nformat, format) ;

nand #2 naf0 (naflout,parity,ninBusl0), // format check
nafl(naflout,inBus(11],inBus(0]);
nor #2 nrfl0(format,naflout,naflout),

nrll (latch,nformat, clk), // latch
nrr2 (nclrDff, reset,clxVvValid) ; // clear bus valid
and #2 and0(partClear, format,busvalid); // partial clear

nor #2 nr0(clrvalid,inBus([11],ninBusl0,nbusvValid);: // clear bus valid
dff b db0 (busValid,nbusvalid, format,hi,nclrDff, latch);// busvValid

initial
hi=1;

endmodule

Figure 56. Input Stream Validity Check Structural model Ve:rilog® source code.

109

C. COMMAND DECODER AND CONTROLLER

//***

// File: cmd_decode_test.v

//

// Description: Test bench for Command Decoder and Controller
//

// Author: Jeff Link

//***

module cmd_decode_test;

reg [7:0] cmdBus;
reg busvalid, reset;

wire [5:0] pwReg,rpReg;

clock clkl (clk);
// cmd_decode_b dc0 (enPwr,pwReg,rpReg,cmdBus,busValid,clk,reset);
cmd_decode_s dcl (enPwr,pwReg, rpReg, cmdBus, busvValid, clk, reset) ;

initial begin
$display("\t\t\tenPwr pwReg rpReg") ;
$monitor("time %04 \t %b $b %b",
$time, enPwr, pwReg, YpReg) ;

cmdBus=0;

busvalid=0;

reset=1l;

#7 reset=0;

#9 cmdBus=8'b00011010; // valid address, execute command
busvalid=1; // 16

#80 cmdBus=8'b10000110; // put 110 in pw reg & start tactor
busvalid=1; // 96

#80 cmdBus=8'b11000011; // put 11 in rp reg & start tactor
busvalid=1; //176

#80 ¢cmdBus=8'b00010010; // invalid address, ignore command
busvalid=1l; //256 :

#80 cmdBus=8'b10001010; // don’t put 1010 in pw reg
busvValid=1; //336

#80 cmdBus=8'b11000100; // don’t put 100 in rp reg
busValid=1l; //416

#80 cmdBus=8'b01111111; // all call address, execute command
busvalid=1; //496

#80 cmdBus=8'b10001010; // put 1010 in pw reg & start tactor
busvalid=l; //576

#80 cmdBus=8'b11001011; // put 1011 in rp reg & start tactor
busvalid=1l; //656

#80 cmdBus=8'b00011010; // valid address, execute command
busvalid=1; //736

#80 cmdBus=8'b10000000; // put 0000 in pw reg & start tactor
busValid=1l; //816

#80 cmdBus=8'b11000010; // put 0010 in rp reg & start tactor
busvalid=1l; //896

#80 cmdBus=8'b00010010; // invalid address, ignore command
busvalid=1l; //976

#100

$finish

end

Figure 57. Command Decoder and Controller Test Bench Verilog® source code.

110

always @ (cmdBus) begin
#75 busValid=0;
end

endmodule

Figure 57. Command Decoder and Controller Test Bench Verilog® source code.
(continued)

//***

// File: cmd_decode_b.v

//

// Description: Command Decoder and Controller - behavioral model
// :

// Author: Jeff Link

//********************'k**

module cmd_decode_b (enPwr,pwReg, rpReg,cmdBus,busvValid, clk,nReset) ;

output enPwr,pwReg, rpReg;
wire enbPwr;

wire {5:0] pwReg, rpReg;
input [7:0] cmdBus;

input busValid, clk,nReset;
wire [6:0] tactAddr;

addr_ref_b ar (tactAddr);
addr_comp_b ac (validAddr, cmdBus, tactAddr);
cmd_logic_b ¢l (enPwr,pwLatch, rpLatch,
cmdBus, busvValid, validaddr, pwDiff, rpDiff, clk,nReset) ;
pw_reg_b pr (pwReg,pwDiff,cmdBus([5:0],pwlLatch,nReset) ;
rp_reg_b rr (rpReg,rpDiff,cmdBus[5:0],rpLatch,nReset);

endmodule .

Figure 58. Command Decoder and Controller Behavioral model Verilog® source code.

111

//******************************-k**

// File: cmd_decode_s.v

//

// Description: Command Decoder and Controller - structural model
//

// Author: Jeff Link

//**************1\-**'************

module cmd_decode_s (enPwr,pwReg,rpReg, cmdBus,busValid, clk, reset);

output enPwr,pwReg,rpReg;
wire enPwr;

wire [5:0] pwReg, rpReg;
input [7:0] cmdBus;

input busvValid,clk, reset;
wire [6:0] tactAddr;

addr_ref_b ar (tactAddr);
addr_comp_s ac (validaddr, cmdBus, tactAddr);
cmd_logic_s ¢l (enPwr,pwlatch,rplLatch,
cmdBus, busValid,validaddr, pwDiff, rpDiff, clk, ~reset) ;

pw_reg_s pr (pwReg,pwDiff,cmdBus[5:0],pwlLatch, reset);
rp_reg_s rr (rpReg,rpDiff,cmdBus(5:0],rpLatch, reset);
endmodule

Figure 59. Command Decoder and Controller Structural model Verilog® source code.

112

1. Command Sequence Controller

//***

// File: cmd_logic_test.v

//

// Description: Test bench for Command Sequence Controller
/7

// Author: Jeff Link

//***

module cmd_logic_test;

reg [7:0] cmdBus;
reg busValid,nValidaddr,pwDiff,rpDiff,nReset;

clock clkl (clk);
// ecmd_logic_b log (enPwr,pwLatch,rpLatch,
// cmdBus,busvValid,nValidaddr,pwDiff, rpDiff, clk,nReset) ;
cemd_logic_s log (enPwr,pwLatch,rpLatch,
cmdBus, busvValid,nvalidAddr,pwDiff, rpDiff, clk,nReset) ;

initial begin
$display("\t\t\tenPwr pwLatch rpLatch");
$monitor("time %04 \t %b %b . $b",
$time, enPwr, pwLatch, rpLatch) ;
cmdBus=0;
busvalid=0;
nvalidaddr=1;
pwDif£=0;
rpDiff=0;
nReset=0;
#7 nReset=l;
_#9 cmdBus=8'b00011010;
busvalid=1l; //16
#5 nvalidaddr=0; /721
#21 busvValid=0; //42
#26 nValidaddr=1;
cmdBus=8'b10000110;
busvalid=1; //68
#4 pwDiff=1; //72
#26 busvalid=0; //98
#12 cmdBus=8‘'b11000010;
busvalid=1; //110
#4 rpDiff=1; //114
#19 busvalid=0; //133
#41 cmdBus=8'b00000000;
busvalid=1; //174
#4 pwDiff=1; //178
#12 busValid=0; //190
#4 cmdBus=8'b00000000;
busvalid=1; //194
#16 busvalid=0; //210
#100
sfinish;
end

Figure 60. Command Sequence Controller Teét Bench Verilog® source code.

113

always @ (posedge pwLatch) begin
#3 pwDiff=0;
end

always @ (posedge rpLatch) begin
#3 rpDiff=0;
end

endmodule

Figure 60. Command Sequence Controller Test Bench Ven'log® source code. (continued)

//***

// File: cmd_logic.b.v.

//

// Description: Command Sequence Controller - behavioral model
//

// Author: Jeff Link

//***

module cmd_logic_b (enPwr,pwLatch,rpLatch,
cmdBus, busValid, vAddr,pwDiff, rpDif £, clk,nReset) ;
output enPwr,pwLatch,rplLatch; :
reg enPwr,pwLatch, rpLatch;
reg [1:0] state;
input [7:0] cmdBus;
input busValid,vAddr,pwDiff,rpDiff,clk,nReset;

initial begin
state=0;
enPwr=0;
pwLatch=0;
rpLatch=0;
end

always @ (posedge clk) begin
if (nReset) begin
case(state)
2'b00,2'b10:
if (busValid&~cmdBus[7]&vAddr)
state=1;
2'b01:
if (busValid&cmdBus(7])
state=3;
2'bll:
if (busvValid&~cmdBus([7])
state=0;
endcase
end
end

Figure 61. Command Sequence Controller Behavioral model Verilog® source code.

114

always begin
if (nReset&&state==3) begin
if (cmdBus==8'b10000000&&busvalid)
enPwr=0;
else if (cmdBus[7]&&~cmdBus[6]&&busvValid)
enPwr=~pwDiff;
else if (cmdBus[7]&&cmdBus[6]&&busvValid)
enPwr=~rpDiff;
pwLatch= (cmdBus [7] &&~cmdBus [6] &&busValid&&pwDiff) ;
rpLatch= (cmdBus [7] &&cmdBus [6] &&busValid&&rpDiff) ;
end
#1;
end

always @ (nReset) begin
if (~nReset) begin
state=0;
enPwr=0;
pwLatch=0;
rpLatch=0;
end
end

endmodule

Figure 61. Command Sequence Controller Behavioral model Verilog® source code.
(continued)

115

//***

// File: cmd_logic_s.v

/7

// Description: Command Sequence Controller - structural model
/7

// Author: Jeff Link

//****************'k**

module cmd _logic_s (enPwr,pwLatch,rplLatch,
cmdBus, busValid,nvalidaddr,pwDiff, rpDiff, clk, nReset);
output enPwr,pwLatch, rplatch;
wire {1:0] q,nq;
input [7:0] cmdBus:;
input busValid,nValidAddr,pwDiff,rpDiff, clk,nReset;
reg hi;

dff_b ds0(gl[0],nqgl[0],nd2out,hi,nReset, clk), // state registers
dsl(gl1].,nqg(1],ntOout,hi, nReset,clk);

not #1 nt0(ntlout,ndlout),
nt4 (nt4out,cmdBus(6]),
nt5 (pwlLatch,nd4out),
nté (rpLatch,ndSout) ;

nand #2 ndo0 (ndOout,cmdBus(7],ql0]),
ndl (ndlout,ngll],ql0]),
nd2 (nd2out,ndlout,ndlout, orlout),
nd3 (nd3out,nrlout,nrlout, anlout),
nd4 (nddout, anlout,pwDiff, ntdout),
nds (nd5out,anlout, rpDiff, cmdBus[6]),
ndé6 (ndéout,nReset,nd3out),
nd7 (nd7out,anlout,pwDiff, rpDiff),
nd8 (nd8out,nd4out,nd5out, nd7out) ;

or #2 or0(orlout,cmdBus{7],ql[0],nValidAddr),
orl (orlout,ndéout,nd8out) ;

nor #2 nr0(nrlout,cmdBus[0],cmdBus([1],cmdBus(2]),
nrl (nrlout,cmdBus[3],cmdBus[4], cmdBus[5]),
nr6 (enPwr,nr7out, orlout),
nr7 (nr7out, enPwr,anlout) ;

and #2 an0 (anlout,cmdBus[7],busvalid,ntdout),
anl (anlout,q[1l],gl[0],busvalid, cmdBus[7]);

initial
hi=1;
endmodule

Figure 62. Command Sequence Controller Structural model Ven’log® source code.

116

2. Address Comparator

//***

// File: addr_comp_test.v

//

// Description: Test bench for Address Comparator
//

// Author: Jeff Link

//***

module addr_comp_test;

reg [7:0] inBus;
wire [6:0] tactAddr;

addr_ref_b addref (tactaddr);

// addr_comp_b addcmp (nvalidAddr, inBus, tactAddr);
addr_comp_s addcmp (nValidAddr, inBus, tactAddr);

// addr_comp_alt addcmp (nValidAddr, inBus, tactAddr);

initial begin
for (inBus=0; inBus<255; inBus=inBus+l) begin
#20
if (~nvValidaddr)
$display("time %0d\t $b is valid address", $time, inBus);
end
#20 .
if (~nvalidaddr)
$display("time %04\t $b is valid address",$time, inBus);
$finish; .
end
endmodule .

Figure 63. Address Comparator Test Bench Verilog® source code.

//***

// File: addr_comp_b.v

/7

// Description: Address Comparator - behavioral model
//

// Author: Jeff Link

//***

module addr_comp_b (validAddr, inBus, tactAddr) ;
output validaddr;
reg validaddr;
input [7:0] inBus;
input [6:0] tactAddr;

always begin
#4
validAddr = (~inBus[7]1&&(inBus([6:0]==tactAddr||inBus[6:0]==7'b1111111));
end
endmodule

Figure 64. Address Comparator Behavioral model Verilog® source code.

117

//********************************-k**************************************

// File: addr_comp_s.V
// .
// Description: Address Comparator - structural model

//
// Author: Jeff Link

//***

module addr_comp_s (nValidAddr, inBus, tactAddr);
output nvalidaddr;
input [7:0] inBus;
input [6:0] tactAddr;

xnor #2 xeq0 (xegOout,inBus[0],tactAddr(0]), // match reference
xeql (xeglout, inBus[1], tactAddr[1]),
xeq2 (xeg2out, inBus [2], tactAddr[2]),
xeq3 (xeg3out, inBus[3], tactAddr[3]),
xeq4(xeq4out,inBus[4],tactAddr[4]),
xeq5 (xeg5out, inBus[5], tactAddr[5]),
xeqb (xegbout, inBus[6], tactAddr(6});

nand #2 nae0 (naelout, xeqlout, xeglout, xeg2out),
nae2 (nae2out, xeg3out, xegdout, xeg5out) ,
nae3 (nae3out, xegbout,ninBus7) ;

nor #2 nre0(thisAddr,naelout,nae2out,nae3out);

not #1 ntel(ninBus7,inBus[7]); // common elements
nor #2 nrn0(nvalidaddr,thisaAddr,allCall);

nand #2 naa0(naaOout,inBus[0],inBus(1l],inBus[2]), // all call check
naa2 (naa2out, inBus[3],inBus[4],inBus[5]),
naa3 (naa3out, inBus[6],ninBus7) ;

nor #2 nra0(allCall,naalout,naa2out,naa3out);

endmodule

Figure 65. Address Comparator Structural model Verilog® source code.

118

//***

// File: addr_comp_alt.v
//
// Description: Address Comparator - alternate model

/7
// Author: Jeff Link

//***

module addr_comp_alt (validaddr, inBus, tactAddr);
output validaddr;
input [7:0] inBus:;
input [6:0] tactAddr:;

xnor #2 xeqg0 (xeqgOout,inBus[0], tactAaddr[0]), // match reference
xeql (xeglout, inBus[1], tactAddr([1]),
xeq2 (xeg2out, inBus[2], tactAddr([2])
xeq3 (xeg3out, inBus[3], tactAaddr[31),
xeq4d (xegdout, inBus (4], tactAddr([4]),
xeqb (xegSout, inBus [5], tactAddr([5]),
xeqb (xegbout, inBus[6], tactaddr[6]);
and #2 anel(anelout, xeglout,xeglout),
anel (anelout, xeg2out,xeqg3out),
ane2 (ane2out, xegdout, xegSout),
ane3 (ane3out, xegbout,ntclout),
ane4 (anedout, anelout, anelout),
ane5 (aneSout, ane2out, ane3out) ,
aneé6 (thisaddr, anedout, aneSout) ;

’

not #1 ntc0(ntcOout,inBus(7]); // common elements
or #2 orc0 (validaddr, thisAddr,allCall);

and #2 anal(analout,inBus[0],inBus[1]), // all call check
anal(analout, inBus[2], inBus(3]),
ana2 (ana2out, inBus([4], inBus[5]),
ana3l (ana3out, inBus([6],ntclout),
anad (anadout, analout,analout),
anab (anaSout,ana2out, ana3out),
anaé6 (allCall, anadout, anaSout) ;

endmodule

Figure 66. Address Comparator Alternate Structural model Verilog® source code.

119

3. Address Reference

//***

// File: addr_ref_test.v
//
// Description: Test bench for Address Reference

//
// Author: Jeff Link

//***

module addr_ref_test;
wire [6:0] tactAddr;
addr_ref_ b addrl (tactAddr);

initial begin
#1
$display("time %04\t %b is reference address", $time, tactaddr);
$finish;
end
endmodule

Figure 67. Address Reference Test Bench Verilog® source code.

//***

// File: addr_ref_b.v
//
// Description: Address Reference - behavioral model

//
// BAuthor: Jeff Link

//**************'k**

‘define ADDRESS 7’'b0011010

module addr_ref_b (tactAddr);
output [6:0] tactAddr;
reg [6:0] tactAddr;

initial begin
tactAddr = ‘ADDRESS;
#1;
end
endmodule

Figure 68. Address Reference Behavioral model Verilog® source code.

120

4. Pulse Width Register

//***

// File: pw_reg_test.v

//

// Description: Test bench for Pulse Width Register
//

// Author: Jeff Link

//***

module pw_reg_test;

reg [5:0] inBus:;
reg latch,reset;
wire [5:0] pwReg;

// pw_reg b regl (pwReg,pwDiff, inBus, latch,reset);
pw_reg_s regl (pwReg,pwDiff,inBus, latch,reset);

initial begin
$display("\t\t\t inBus pwReg pwDiff");
reset=1;
#1
reset=0;
#1
latch=1;
#3
for (inBus=2; inBus<63; inBus=inBus+5) begin
#4
latch=~latch;
#20
latch=~latch;
#16;
end
#100
$finish;
end

always @ (pwDiff) begin
$display("time $0d \t %b %b %b",$time,inBus,pwReg,pwDiff);
end '

endmodule

Figure 69. Pulse Width Register Test Bench Ven'log® source code.

121

//***

// File: pw_reg_b.v

//

// Description: Pulse Width Register - behavioral model
//

// Author: Jeff Link

//***

module pw_reg_b (pwReg,pwDiff, inBus,latch,nReset);

output [5:0] pwReg;

output pwDiff;

reg [5:0] pwReg;

reg pwDiff;

input [5:0] inBus;

input latch,nReset;

always @ (posedge latch) begin
if (nReset)
#3 pwReg=inBus;
end

always @ (inBus) begin
if (nReset)
#4 pwDiff=(inBus!=pwReg) ;
end

always @ (pwReg) begin
if (nReset)
#4 pwDiff=(inBus!=pwReg) ;
end

always @ (negedge nReset) begin
#1 pwReg=0;
end
endmodule

Figure 70. Pulse Width Register Behavioral model Verilog® source code.

122

//***‘k*********

// File: pw_reg_s.v

7/

// Description: Pulse Width Register - structural model
//

// Author: Jeff Link

//***‘************

module pw_reg_ s (pwReg,pwDiff,inBus,latch,reset);

output [5:0] pwRegy;

output pwDiff;

wire [5:0] pwReg,npwReg;
input [5:0] inBus;

input latch,reset;

reg hi;

dff_b db0(pwReg[0],npwReg[0],inBus(0], hi, ~reset, latch},
dbl (pwReg[1] ,npwReg([l],inBus[1],hi, ~reset, latch),
db2 (pwReg[2],npwReg[2],inBus(2],hi, ~reset, latch),
db3 (pwReg[3] ,npwReg[3],inBus[3],hi, ~reset, latch),
db4 (pwReg [4] ,npwReg[4],inBus(4],hi, ~reset, latch),
db5 (pwReg [5] ,npwReg[5], inBus[5],hi, ~reset, latch);

xor #2 xeq0(xegOout,inBus([0],pwRegl0]),
xeql (xegqlout, inBus[1],pwReg{1]),
xeq2 (xeq2out, inBus[2] ,pwReg(2]),
xeq3 (xeg3out, inBus[3],pwReg[3]),
xeq4d (xeqdout, inBus[4],pwReg[4]),
xeq5 (xeg5out, inBus[5] ,pwReg[5]) ;

nor #2 nro0(nrOout,xeglout,xeqglout,xegq2out),
nrl (nrlout, xeq3out, xegdout, xegSout) ;

nand #2 nd0 (pwDiff,nrlout,nrlout);
initial begin

hi=1;
end

endmodule

Figure 71. Pulse Width Register Structural model Verilog® source code.

123

5. Repetition Period Register

//***

// File: rp_reg_test.v

/7

// Description: Test bench for Repetition Period Register
7/

// Author: Jeff Link

//********************'k**

module rp_reg_test;

reg [5:0] inBus;
reg - latch,reset;
wire [5:0] rpReg:;

// rp_reg b regl (rpReg,rpDiff,inBus,latch,reset);
rp_reg_s regl (rpReg,rpDiff, inBus,latch,reset);

initial begin
$display("\t\t\t inBus rpReg zrpDiff");
reset=1l;
#1
reset=0;
#1
latch=1;
#3 "
for (inBus=2; inBus<63; inBus=inBus+5) begin
#4
latch=~latch;
#20
latch=~latch;
#16;
end
#100
$finish;
end

always @ (rpDiff) begin _
$display("time %0d \t %b %b %b", $time, inBus, rpReg, rpDiff) ;
end

endmodule

Figure 72. Repetition Period Register Test Bench Verilog® source code.

124

//***

// File: rp_reg b.v
/7
// Description: Repetition Period Register - behavioral model

//
// Author: Jeff Link

//***

module rp_reg b (rpReg,rpDiff, inBus, latch,nReset);

output [5:0] rpReg;
output rpDiff:;

reg [5:0] rpReg:
reg rpDiff;

input [5:0] inBus;
input latch,nReset;

always @ (posedge latch) begin
if (nReset)
#3 rpReg=inBus;
end

always @ (inBus) begin
if (nReset)
#4 rpDiff=(inBus!=rpReg);
end

always @ (rpReg) begin
if (nReset) ‘
#4 rpDiff=(inBus!=rpReg) ;
end

always @ (negedge nReset) begin
#1 rpReg=0;
end
endmodule

Figure 73. Repetition Period Register Behavioral model Verilog® source code.

125

//***

// File: rp_reg_s.v

// :

// Description: Repetition Period Register - structural model
// :

// Author: Jeff Link

//******'***

module rp_reg_s (rpReg,rpDiff, inBus, latch,reset);

output [5:0] rpReg:

output rpDiff;

wire [5:0] rpReg,nrpReg;
input [5:0] inBus;

input -latch,reset;

reg hi;

dff_b db0 (rpReg[0],nrpReg[0], inBus[0],hi, ~reset, latch),
dbl (rpReg[1l],nrpReg(l],inBus[1],hi, ~reset, latch),
db2 (rpReg[2] ,nrpReg[2],inBus(2],hi, ~reset, latch),
db3 (rpReg(3],nrpReg[3], inBus[3],hi, ~reset, latch),
db4 (rpReg[4] ,nrpReg(4], inBus[4],hi, ~reset, latch),
db5 (rpReg{5] ,nrpReg{5],inBus[5],hi, ~reset, latch);

xor #2 xeq0(xeqgOout,inBus[0],rpReg(0]),
xeql (xeqlout, inBus([1],rpReg(l]),
xeq2 (xeq2out, inBus[2],rpReg[2]),
xeq3 (xeq3out, inBus[3],rpReg(3]),
xeq4 (xeqdout, inBus[4],rpReg(4]),
xeq5 (xeq5out, inBus[5] ,xpReg[5]);

nor #2 nrO0(nrOout,xeqglout,xeglout,xeg2out),
nrl (nrlout, xeg3out,xeqgdout, xegSout) ;

nand #2 nd0 (rpDiff,nrlout,nrlout});
initial begin
hi=1;

end

endmodule

Figure 74. Repetition Period Register Structural model Verilog® source code.

126

D. TACTOR POWER CONTROLLER

//***

// File: pwr_cntrl_test.v

//

// Description: Test bench for Tactor Power Controller
//

// Author: Jeff Link

//*************************************-k*********************************

module pwr_cntrl_test;

reg [5:0] pwReg,rpReg;
reg tEnable;

clock #(25) clkl (cilk);
// pwr_cntrl_b pcO (tPwrl, tPwr2, pwReg, rpReg, tEnable, clk);
pwr_cntrl_s pc0 (tPwrl, tPwr2, pwReg, rpReg, tEnable, clk);

initial begin
tEnable=0;
pwReg=3;
rpReg=2;
$display("\t pwReg = %b rpReg = %$b\n",pwReg, rpReg) ;
Sdisplay ("\t\t\ttPwrl tPwr2");
$monitor("time %0d \t %b %b",S$time, tPwrl, tPwr2);
#2000
tEnable=1;
#2000000
$finish;

end

endmodule

Figure 75. Tactor Power Controller Test Bench Verilog@> source code.

//***

// File: pwr_cntrl_b.v

//

// Description: Tactor Power Controller - behavioral model
/7

// Author: Jeff Link

//***

module pwr_cntrl b (tPwrl, tPwr2, pwReg, rpReg, tEnable, clk);

output tPwrl, tPwr2;
wire tPwrl, tPwr2;
input [5:0] pwReg, rpReg;
input tEnable, clk;

clk_div_b clkdiv (fr250, fr62, clk, ~tEnable);

pw_dncntr_b pwCntr (pwZero,pwReg,cntlLd,cntClr, £r62);

rp_dncntr_b rpCntr (rpGTl ,rpReg,cntld,cntClr, fré62);

pwr_logic_b pLogic (enPwr,cntlLd,cntClr, tEnable,pwZero, rpGT1, fré2);
pwr_osc_b pOscil (tPwrl, tPwr2, enPwr, fr250);

endmodule

Figure 76. Tactor Power Controller Behavioral model Verilog® source code.

127

//***

// File: pwr_cntrl_s.v
/7
// Description: Tactor Power Controller - structural model

/7
// Author: Jeff Link

//***

module pwr_cntrl_s (tPwrl, tPwr2, pwReg, rpReg, tEnable, clk);

output tPwrl, tPwr2;
input [5:0] pwReg, rpReg;
input tEnable, clk;

clk_div_s clkdiv (£r250, fré62, clk,reset);

pw_dncntr_s pwCntr (npwZero, pwReg, cntld, cntClr, £r62) ;

rp_dnentr_s rpCntr (nrpGT1l , rpReg, cntld, cntClr, £ré2) ;

pwr_logic_s pLogic (enPwr, cntld, cntClr, tEnable, npwZero,nrpGTl, fré2) ;
pwr_osc_s pOscil (tPwrl, tPwr2, enPwr, £r250);

not #1 nt0 (reset,tEnable);

endmodule

Figure 77. Tactor Power Controller Structural model Verilog® source code.

128

1. Power Control Logic

//*************‘******************‘k************‘k‘k******?\'*‘k****************

// File: pwr_logic_test.v
//
// Description: Test bench for Power Control Logic

//
// Author: Jeff Link

//************_***

module pwr_logic_test;
reg enable,npwZero,nrpGTl;
clock clkl (clk);

// pwr_logic_b pl0 (enPwr,cntld,cntClr, enable,npwZero,nrpGTl,clk);
pwr_logic_s pl0 (enPwr,cntLd,cntClr, enable,npwZero,nrpGTl, clk) ;

initial begin

enable=0;

npwZero=0;

nrpGTl=1;

$display("\t\t\tenPwr cntLd cntClr");
$Smonitor ("time %0d \t %b %b $b", $time, enPwr, cntld, cntClr) ;
#25

enable=1; // 25 - 110

#40

npwZero=1l; // 65 - 100

#20

nrpGT1=0; // 85 - 101

#20

npwZero=0; //105 - 111

#20

nrpGT1=1; //125 - 110

#20

npwzZero=1;
nrpGT1=0; //145 - 101
#20
nrpGT1l=1; //165 - 100
#20
npwzero=0; //185 - 111
nrpGT1=0;
#40;
$finish;
end
endmodule

Figure 78. Power Control Logic Test Bench Verilog® source code.

129

//***

// File: pwr_logic_b.v
/7 .
// Description: Power Control Logic - behavioral model

//
// Author: Jeff Link

//***

module pwr_logic_b (enPwr,cntLd,cntClr,enable,prero,prTl,clk);

output enPwr, cntLd,cntClr;
reg enPwr, cntld, cntClr;
input enable,pwZero,rpGTl,clk;

always begin
cntClr=~enable;
enPwr=~pwzZero;
centLd=~rpGT1;
#1;

end

endmodule .

Figure 79. Power Control Logic Behavioral model Verilog® source code.

//***

// File: pwr_logic_s.v

//
// Description: Power Control Logic - structural model

//
// Author: Jeff Link

//*************************************-k*********************************
module pwr_logic_s (enPwr, cntLd, cntClr, enable, npwZero,nrpGTl, clk) ;

output enPwr,cntlLd,cntClr;
reg enPwr, cntlLd;
input enable,npwZero,nrpGTl,clk;

not #1 ntO(cntClr,enable);

always begin
enPwr=npwZero;
cntLd=nrpGT1;
#1;

end

endmodule

Figure 80. Power Control Logic Structural model Verilog® source code.

130

2. Power Oscillator

//**‘k*‘k***‘k************************************'k*************************

// File: pwr_osc_test.v

// :

// Description: Test bench for Power Oscillator
//

// Author: Jeff Link

//***

module clk_div_test;

reg enable;
integer ii; // loop counter

clock #(50) clk0 (clk);
// pwr_osc_b po0 (pwrl, pwr2, enable, clk);
pwr_osc_s po0 (pwrl, pwr2, enable, clk);

initial begin
Sdisplay(" \tpwrl pwr2 enable");
Smonitor("time %04 \t %b %$b $b", Stime,pwrl,pwr2, enable);
enable=1l;)
ii = 0;
while (ii<12) begin
#5;
if (11%3==2)
enable=0;
else
enable=l;
end
$finish;
end

always @ (posedge clk)
ii=ii+1;

endmodule

Figure 81. Power Oscillator Test Bench Verilog® source code.

131

// File: pwr_osc_b.v
//

// .
// Author: Jeff Link

output pwrl, pwr2;
reg pwrl, pwr2;
input enable, osc;

always begin
#2
if (~enable) begin
pwrl=0;
pwr2=0;
end
else begin
pwrl=osc;
pWwr2=~0sC;
end
end

endmodule

module pwr_osc_b (pwrl, pwr2,

//*****-k***

// Description: Power Oscillator - behavioral model

//***

enable, osc);

Figure 82. Power Oscillator Behavioral model Verilog® source code.

// File: pwr_osc_s.v
!/

//
// Author: Jeff Link

output pwrl, pwr2;
wire pwrl, pwr2;
input enable, osc;

not (nosc,o0sc),
(pwrl,npwrl),
(pwxr2,npwr2) ;

endmodule

module pwr_osc_s (pwrl, pwr2,

nand #2 (npwrl,enable,osc),
(npwr2, enable,nosc) ;

//**********************************'k************************************

// Description: Power Oscillator - structural model

//***-k*****************************

enable, osc);

Figure 83. Power Oscillator Structural model Verilog® source code.

132

3. Pulse Width Down Counter

//***

// File: pw_dncntr_test.v

7/

// Description: Test bench for Pulse Width Down Counter
/7

// Author: Jeff Link

//***

module pw_dncntr_test;

reg [5:0] value;
reg load,clear;

clock clkl (clk);
// pw_dncntr_b down (npwZero,value, load, clear, clk);
pw_dncntr_s down (npwZero,value,load,clear,clk);

initial begin
value=9;
load=0;
clear=l;
$display ("\t\t\t nZro clear load");
Smonitor ("time %04 \t %$b $b $b", $time,npwZero, clear, load) ;
#25
load=1;
#40
clear=0; // 65
#100
load=0; // 165
#100
load=1; // 265
#80
load=0; // 345
#400 // 745
$finish;

end

endmodule

Figure 84. Pulse Width Down Counter Test Bench Verilog® source code.

133

//***

// File: pw_dncntr_b.v

// .

// Description: Pulse Width Down Counter - behavioral model
/7

// Author: Jeff Link

»
//***

module pw_dncntr_b (zeroCnt,value, load,clear,clk);

output zeroCnt;

reg zeroCnt;

reg [5:0] count;
input [5:0] value;
input 1load,clear,clk;

initial
count=0;

always begin

if (clear)
count=0;’
if (zeroCnt & ~load)
count=0;
zeroCnt=(count==0) ;
#1;
end

always @(posedge clk) begin
#3
if (clear)
count=0;
if (load&~clear)
count=value;
if (~load&~clear&~zeroCnt)
count=count-1;
end

endmodule

Figure 85. Pulse Width Down Counter Behavioral model Verilog® source code.

134

//***

// File: pw_dncntr_s.v

/7

// Description: Pulse Width Down Counter - structural model
/7

// Author: Jeff Link

//***

module pw_dncntr_s (npwZero,value,load,clear,clk);

output npwZero;

wire [5:0] a,nqg;
input [5:0] value;
input 1load,clear,clk;
reg hi;

nor #2 nr3(nr3out,qgl[2],nd2out),
nr5 (nrSout,gql4],nddout) ;

nand #2 nd2 (nd2out,ngll],nqgl0]),
nd4 (nddout,ng[3],nr3out);

xnor #2 xnl(xnlout,ngl[0],ngl[1]),
xn2 (xn2out,nd2out,gl2]1),
xn3 (xn3out,nr3out,nqg(31]),
xn4 (xndout,nddout,ql4]),
xn5 (xn5out,nr5out,nqgf5]);

tgmux_b tm0 (tmOout,ng[0], value(0],load),
tml (tmlout,xnlout,value(l], load),
tm2 (tm2out,xn2out,value[2},load),
tm3 (tm3out,xn3out,value([3], load),
tm4 (tmdout, xndout,valuel[4],load),
tm5 (tmSout, xn5out,value([5], load) ;

dff_b dc0(gi0]l,ng[0],tmOout,hi,dClr,clk), // count registers
decl(gll]l,ngl(1], tmlout,hi,dClr,clk),
de2(ql2],ngl21, tm2out, hi,dClr, clk),
dc3(ql3],nql[3],tm3out,hi,dClr,clk),
dc4(ql4],ngl4],tmdout,hi,dClr,clk),
dc5(ql5],ngf51, tmSout, hi, dClr, clk) ;

nor #2 nr0{(nrlout,ql0],qll]l,ql2]),

' nrl(nrlout,q(3],ql4] . q[5]1),
nr2 (nr2out, load, npwzero),
nr3 (dClr, nr2out,clear);

nand #2 nd0 (npwZero,nrOout,nrlout);

initial
hi=1;
always @ (q) begin

$display("time %04 \tcount is %b",$time,q);
end

endmodule

Figure 86. Pulse Width Down Counter Structural model Verilog® source code.

+

135

4. Repetition Period Down Counter

//***

// File: rp_dncntr_test.v

//

// Description: Test bench for Repetition Period Down Counter
//

// Author: Jeff Link

//*******************'k**A*

module rp_dncntr_test;

reg [5:0] value;
reg load,clear;

clock clkl (clk);
// rp_dncntr_b down (nrpGT1l,value,load,clear,clk);
rp_dnentr_s down (nrpGT1,value,load,clear,clk);

initial begin
value=99;
load=0;
clear=1l; .
$display("\t\t\t nrpGTl clear load"):
$monitor("time %0d \t $b %b $b",$time, nrpGT1l, clear, load) ;
#25
load=1;
#40
clear=0; // 65
#100
load=0; // 165
#100
load=1l; // 265
#80
load=0; // 345
#5000 // 745
$finish;

end

endmodule

Figure 87. Repetition Period Down Counter Test Bench Verilog® source code.

136

//**‘k****************************

// File: rp_dncntr_b.v

// i

// Description: Repetition Period Down Counter - behavioral model .
/7

// Author: Jeff Link

//***

module rp_dnentr_b (rpGTl,value,load,clear,clk);

output rpGT1;

reg rpGT1, zeroCnt;
reg [7:0] count;
input [5:0] value;
input 1load,clear,clk;

initial
count=0;

always begin
if (clear)
count=0;
if (zeroCnt & ~load)
count=0;
zeroCnt=(count==0) ;
rpGT1 =(count>1l);
#1;
end

always @(posedge clk) begin
#3
if (clear)’ ‘
count=0;
if (load&~clear)
count={value, 2’'b00};
if (~load&~clear&~zeroCnt)
count=count-1;
end

endmodule

Figure 88. Repetition Period Down Counter Behavioral model Verilog® source code.

//***

// File: rp_dncntr_s.v

//

// Description: Repetition Period Down Counter - structural model
/7

// Author: Jeff Link

//*********************************‘*************************************‘k

module rp_dncntr_s (nrpGTl,value,load,clear,clk);
output nrpGT1;

Figure 89. Repetition Period Down Counter Structural model Verilog® source code.

137

wire [7:0] 4g,ng;
input [5:0] wvalue;
input load,clear,clk;
reg hi,lo;

nand #2 nd2 (nd2out,ngl(l],ng[0]),
nd4 (nd4out,ngl3],nr3out),
ndé (ndéout,ng(5],nrSout) ;

nor #2 nr3(nr3out,ql2],nd2out),
nrs5 (nr5out,g{4],nddout),
nr7 (nr7out,g(6],ndbéout) ;

xnor #2 xnl (xnlout,ng(0],ng(l]),
xn2 (xn2out,nd2out,gl2]),
xn3 (xn3out,nr3out,ng(3]),
xn4 (xnd4out,nddout,ql4]),
xn5 (xn5out, nrSout,ng(51),
xn6 (xnéout,ndéout,ql6]),
xn7 (xn7out,nr7out,nq(7]1);

tgmux_b tmO (tmOout,ng[0], lo, load),
tml (tmlout,xnlout, lo, load),
tm2 (tm2out, xn2out,valuel[0], load),
tm3 (tm3out,xn3out,value(l], load),
tmd (tmdout,xndout,valuel2], load),
tm5 (tmSout, xn5out,value(3], load),
tmé6 (tmbout,xnbout,valueld], load),
tm7 (tm7out,xn7out,valuel5],load) ;

dff_b dc0(gf0],ngl[0], tml0out,hi,dClr,clk), // count registers
del(gl1],nqgll], tmlout, hi,dClr,clk),
dc2(ql2],ngl[2], tm2out,hi, dClr, clk),
dc3(ql3],nqgl3],tm3out,hi,dClr, clk),
dcd (g[4],ngl4], tmdout,hi, dClr, clk),
dc5(ql5],nql5], tm5out,hi, dClr,clk),
dc6(ql6],ngl[6],tmbéout,hi,dClr,clk),
de7(ql7],nal7], tm7out, hi, dClr, clk) ;

nor #2 nr0(nrOout,qll],ql2]),
nrl (nrlout,ql3],ql4]),
nr2 (nr2out,g(51.ql61,ql[7]1),
nr4 (nrdout, load, ZCnt) ,
nr6(dClr, nrdout,clear);

nand #2 nd0(zZCnt,ng([0],nrpGT1);

and #2 an0(nrpGT1l,nrlOout,nrlout,nr2out);

initial begin
hi=1;
lo=0;

end

always @(g) begin
$¢display("time %0d \tcount is %b",$time,q);
end)
endmodule

Figure 89. Repetition Period Down Counter Structural model Verilog® source code.
(continued)

138

5. Clock Divider

//***

// File: clk_div_test.v

//

// Description: Test bench for Clock Divider
//

// Author: Jeff Link

//***

module clk_div_test;

reg reset;
integer ii; // loop counter

clock #(50) ¢clk0 (clk):
// clk_div_b cd0 (fr250, fr62, clk, reset);
clk_div_s cd0 (fr250, fr62, clk, reset);

initial begin
$display (" \tfr250 fr62");
$monitor("time %04 \t %b $b",$time, £r250, fr62) ;
reset=l;
#2
reset=0;
ii = 0;
while (ii<3) begin
#5;
end
$finish;
end

always @ (posedge fré62)
ii=ii+1;

endmodule

Figure 90. Clock Divider Test Bench Verilog® source code.

139

//***********-k***

// File: clk _div_b.v

//

// Description: Clock Divider - behavioral model
//

// Author: Jeff Link

//**»*******************

‘define base 64

module clk_div_b (£fxr250, fré62, clk, reset):;
output £fr250, £fre62;
reg fr250, £fr62;
input c¢lk, reset;
integer countl;

initial begin
countl=0;
£r250=0;
fr62=0;

end

always @ (posedge clk) begin
if (~reset) begin
countl = countl+l;
if (countl%‘base == 0) begin
fr250 = ~£fr250;
end
if (countl%(4*'base) == 0) begin
fre2 = ~fré62;
countl =0;
end
end
end

always begin
#1 ‘
if (reset) begin
countl =0;
end
end
endmodule

Figure 91. Clock Divider Behavioral model Verilog® source code.

//***

// File: clk_div_s.v

//

// Description: Clock Divider - structural model
/7

// BAuthor: Jeff Link

//***

Figure 92. Clock Divider Structural model Verilog® source code.

140

// count registers

// 250 Hz for 1 MHz clk

module clk_div_s (£fr250, fr62, clk, reset):;
output £fr250, £fr62;
reg £fr250, fr62;
wire [{13:0] qg.ng;
input clk, reset;
reg hi;
not #1 nt0 (nReset,reset);
dff_b dec0 (glO0], ngl0], ng[0], hi,nReset,clk),
decl (gf1], ngfl], tdlin, hi,nReset,clk),
dc2 (gl2], ngl2], td2in, hi,nReset,clk),
dec3 (ql3], nqgl(3], td3in, hi,nReset,clk),
dc4 (gl4], nqgl4], td4in, hi,nReset,clk),
de5 (qgl5], ngl[5], td5in, hi,nReset,clk),
dc6 (gl6), nqgl6], tdéin, hi,nReset,clk),
de7 (ql7], nqgl7], td7in, hi, nReset,clk),
dc8 (gl8), ngl8], td8in, hi,nReset,clk),
dc9 (ql92], ngl9], td%in, hi,nReset,clk),
dcl0 (ql[10],ng{10],td10in,hi,nReset,clk),
dcll (gl1l]),nqg(11],tdllin,hi,nReset, clk),
dcl2 (gl12],nqg[l2],td1l2in,hi,nReset,clk),
dcl3 (ql13],nqi13],tdl3in,hi,nReset,clk});
xor #2 xrl (tdlin, g[0], qlll),
xr2 (td2in, nd2out, ngl2]),
xr3 (td3in, nr3out, ql31]1),
xr4 (td4in, nddout, ngl4]),
xr5 (td5in, nxrS5Sout, ql[51]1),
xr6 (tdéin, ndéout, ngl6]),
xr7 (td7in, nr7out, gl[7]).
xr8 (td8in, nd8out, ngl8]), -
xr9 (td9in, nr9out, g[9]).
xr10(tdl0in,ndl0out,ngl[101),
xrll(tdllin,nrllout,qg[11}),
xrl2(tdl2in,ndl2out,nq(121),
xrl13(tdl3in,nrl3out,qg[l13]);
nand #2 nd2 (nd2out, g[l]l, gql0]),
nd4 (nd4out, q[3], nr3out),
ndé (ndéout, g[5], nrS5out),
nd8 (nd8out, ql[7], nr7out),
. ndl0(ndl0out,g[9], nr9out),
ndl2 (ndl2out,qg(1ll],nrllout);
nor #2 nr3 (nr3out, ngl2], nd2out),
nrS (nrSout, ngl4], nddout),
nr7 (nr7out, ng{6], ndéout),
nr9 (nr9out, ngi(8}, nd8out),
nrll(nrllout,ng{10],ndl0ocut),
nrl3(nri3out,ng(l2],ndl2out);
initial
hi=1;
always begin
fr250 = ngl3]; // used vice 11 for simulation speed
fr62 = ngiS]:;
#1;
end
endmodule

Figure 92. Clock Divider Structural model Verilog® source code. (continued)

141

E. SUPPORT COMPONENTS

1. Clock with Parametric Half-Period

//***

// File: clock_test.v

//

// Description: Test bench for Clock with Parametric Half-Period
//

// Author: Jeff Link

//***

module dff_test;

clock clokl (clkl);
clock #(50) clok2 (clk2);
clock #(100) clok3 (clk3);

initial begin
$display("\t\t\tclkl clk2 clk3");
$monitor("time %04 \t %b %b. $b",S$time, clkl, clk2, clk3);
#501
$finish;
end
endmodule

Figure 93. Clock with Parametric Half-Period Test Bench Verilog® source code.

//**************'k**

// File: clock.v

//

// Description: Clock with Parametric Half-Period
/7 .

// Author: Jeff Link

//***

module clock (clk);
parameter delay=10;
output clk;
reg clk;
initial
clk = 1;
always
#(delay) clk = ~clk;
endmodule

Figure 94. Clock with Parametric Half-Period Behavioral model Verilog source code.

142

2. D flip-flop, positive edge triggered

//***

// File: dff_test.v

/7 ‘

// Description: Test bench for D flip-flop
//

// Author: Jeff Link

//**'***

module dff_test;

reg 4,nP,nC; ’ .
wire clk;

clock clkl (clk);
dff_b dffl (g,nqg,nq,nP,nC,clk);

initial begin
d=1;
nP=1;
nC=0;
$display("\t\t\tg ng d nP nC");
Smonitor ("time %04 \t%b %b %b %b %b",$time,q,nq,d,nP,nC);
#12
nC=1;
#20
d=0;
#20
nP=0;
#20
nbkP=1;
#20
d=1;
#20
nC=0;
#20
nC=1;
#20
d=0;
$finish;
end
endmodule

Figure 95. D flip-flop Test Bench Verilog® source code.

143

//***

// File: dff_b.v

/7

// Description: D flip-flop, positive edge triggered - behavioral model
/7

// BAuthor: Jeff Link

//**************************1\-**

module dff_b (g,ng,d,nP,nC,clk);

output q,nqg;

reg q,ng;
input d,nP,nC,clk;

always @ (posedge clk) begin
if (nP&nC) begin

g = #3 4;
nqg = ~g;
end
end

always begin
#1
if (~nC) begin
q=0;
ng=1;
end
end

always begin
#1 .
if (~nP&nC) begin
q=1;
ng=0;
end
end
endmodule

Figure 96. D flip-flop Behavioral model Verilog® source code.

144

3. Transmission Gate MUX

//***

// File: tgmux_test.v

// .
// Description: Test bench for Transmission Gate MUX
//

// Author: Jeff Link

//***

module tgate_test;
reg Ain,Bin,select;
tgmux_b muxl (out,Ain,Bin,select);

initial Dbegin
Ain=1;
Bin=0;
select=0;
$display("\t\t\tout Ain Bin sel");
Smonitor("time %$0d \t %b %b %b %b",S$time,out,Ain,Bin, select);
#10 select=1;
#10 select=0;
#10
Ain=0;
Bin=1;
#10 select=1;
#10 select=0;
#20;
$finish;

end

endmodule

Figure 97. Transmission Gate MUX Test Bench Verilog® source code.

//***

// File: tgmux_b.v
//
// Description: Transmission Gate MUX - behavioral model

//
// Author: Jeff Link

//***

module tgmux_b (out,Ain,Bin,select);

output out;
reg out;
input Ain,Bin,select;

always
#1
if (select)
out = Bin;
else
out = Ain;
endmodule

Figure 98. Transmission Gate MUX Behavioral model Verilog® source code.

145

146

APPENDIX B. SYSTEM DESIGN SCHEMATICS

This appendix provides the design schematics for the Tactor Interface Chip
elements. The schematics were initially designed by hand using circuit examples contained
in References 1 and 8. After the circuits were iteratively revised and simulated, the designs
were reproduced graphically for reference and documentation. The schematics diagrams are
divided into sections based on their parent functional module.

A. SERIAL DATA RECEIVER

1. Twelve-Bit Input Shift Register

12 bit Shift Register

Serial Data Input

|
ol O

D Q D Q D
— = Input Bus

—>Clk Qo —pClk Qp Clk QP bk QP Clk Qp Cclk Q
Cir Cir Cir Clr Cir Cir
T T T [*) [*] (0]

_GCIr _Cir _Cir
Q Clk<¢- 4Q Clk Q Cik

o

I

7
fo)
T
Fe)
ol
o8
x
i
Fo)
Pe]]
o8
=
2|
&
o
adl
=

Reset

Partial Clear

Figure 99. Structural Schematic for the Twelve-Bit Shift Register.

147

2. Eight-Bit Data Latch

8 bit Data Latch
Input Bus
“b Q— “Hp Q@ f~|:> Ql— !—n Q— b Q D Q— ~p Q— P Q
~—>Clk QP | Pk Qp clk_Qp Cik_ QP | pClk_Qp clk QP | PCk_Qp | ~pCik Qp
Cir Cir !‘ Cir ‘> Cir Cir !_ Cir Clr Cir
(2] 1] (2] 1% o [*]
Latch ! !
Reset Dﬁ' J
Command Bus

Figure 100. Structural Schematic for the Eight-Bit Data Latch.

3. Input Stream Validity Check

Input Stream Validity Check

Input[0]
Input[11]

Input{10] |
> Y

Ii_“til]:) Partial Clear
Input{2]) >)

Input[3] ;j)—ED‘ |

Input{4] \F Lo ¢ [‘ Bus Data Valid
Clk_QP—

Input{5] :
\ Cir '
Input[6] '7
' T Latch
;jw DD SIS
Input{8] A
Input{9] r—) .

Clock
FD

Reset

Figure 101. Structural Schematic for the Input Stream Validity Check.

148

C. COMMAND DECODER AND CONTROLLER

1. Command Sequence Controller

Command Sequence Controller

D¢ b Q
—pClk_ Qp—

Cir
.

IOk

ol ©

O—

e

Clr
nValidAddr ——D_ o
/
clock -
nReset
busValid
' =
cmdBus[7]] :
T | L ‘/\
4) } | }
/ M ‘
| l pwlatch
cmdBus[0] [J} >&
_D > rpLatch
pwDiff —
rpDiff
enOutpht

Figure 102. Structural Schematic for the Command Sequence Controller.

149

2. Address Comparator

Address Comparitor
—) >
—) = -

—) >—= = -
=] >~
=Dl

') nValidAddr

cmdBus[7] |’—‘——

|
cmdBus[0] | l

Figure 103. Structural Schematic for the Address Comparator.

150

3. Pulse Width Register

Pulse Width Register

pwRegister

latch

nReset S

111
Y

Q

[
gl= 2
gl QO
|

D Q
—>clk_Qp
Cir
PN
cmdBus[5]
cmdBus[0]

Figure 104. Structural Schematic for the Pulse Width Register.

151

4. Repetition Period Register

latch

Repetition Period Re'gister

rpRegister

D Q

nReset

Clk_Qp

Cir

e

cmdBus[5]

D Q

—pClk_Qp-
Cir

D Q
clk_Qp-
Cir

11 L, L/ \l

cmdBus[0]

Figure 105. Structural Schematic for the Repetition Period Register.

152

D. TACTOR POWER CONTROLLER

1. Power Control Logic

Power Control Logic

enOutput {>o cntClear

npwZero enPower

nrpGT1 . cntload

Figure 106. Structural Schematic for the Power Control Logic.

2. Power Oscillator

Power Oscillator

oscFreq

pwrla

pwrlb

DQ pwr2a

pwr2b

TN

enPower

i

Figure 107. Structural Schematic for the Power Oscillator.

153

3. Pulse Width Down Counter

Pulse Width Down Counter
o
t}bDMux —o Q

1B ek Qp-

pwRegister DbD MUX D Q
I_—J Cir L]

—}L—)D' Mux——p @
1B ek Qb
l Cir
A
bDO‘ MUX D Q
L bcik Gb—
] o
RN
MUX D Q
cntload T —pClk_Qp—
Cil)r
i D’?D
clock

Figure 108. Structural Schematic for the Pulse Width Down Counter.

154

Figure 109. Structural Schematic for the Repetition Period Down Counter.

155

4. Repetiti(jn Period Down Counter
Repetition Period Down Counter
[— cu(|:<T op—
PR
OO T,
T
rpRegister @‘bDor_ Mux _':lc%go_
— —
—}L—)DT_MTX L
T | I
=1 D=
T e -
\ A
A
’ B 2N
-—LjD.:_MUX D Q
ool |
cntLoad I -—CI‘I:(_Ir6
Io—> T
oo

5. Clock Divider

| Clock Divider
__}_LjD—rZ%F;— D_il_/ _Z%g} freq62.5
— ol
LY | DD e
— |
D O =
} ek R -‘‘Do- oK b
TDE)D T, o+ :"}E)D T
— |
_}bL/ T o tibD ny
=P o b :‘}-L-) " 3
T |
T, + :Do»bL/ Xe
nReset T T
ok

Figure 110. Structural Schematic for the Clock Divider.

156

APPENDIX C. STRUCTURAL EVALUATION USING SPICE

SPICE is a circuit simulation program developed by Dr. Lawrence Nagel in the
Department of Electrical Engineering and Computer Sciences at the University of
California, Berkely. The SPICE model for FETs allows defining the semiconductor devices
using pertinent parameter values. This capability affords designers the opportunity to
accurately simulate circuits for evaluation of response time and power consumption.
Reference 7 provides a comprehensive presentation of SPICE commands and conventions.

The structural designs presented in Appendix B were evaluated with SPICE to verify

circuit response. This appendix documents the SPICE code used for evaluating TIC
| component design. Testing was limited to représentative inputs since circuit behavior was
thoroughly evaluated using the Verilog® models presented in Appendix A. Clocked TIC
components were tested at 20 MHz instead of the design speed of 1 MHz to allow a safety
margin for system speed and to reduce the SPICE simulation time. A brief discussion of
each simulation is included to highlight the critical circuit response points.
A. GENERAL DEFINITION FILES
| Modeling the TIC circuits required inclusion of FET parameters in all SPICE source
code files. Each logic element must be defined as a compilation of FETSs since the circuits
‘were defined using fundamental logic elements rather than individual transistors. These
logic element definitions must also be included in all SPICE source code files. These two
inclusion requirements are separated into two different ﬁles to provide three levels of

physical component abstraction.

157

1. CMOS FET Model Parameters

The CMOS FET model parameters are provided by the expected VLSI chip

manufacturer. The parametric values are actually determined using a combination of

theoretical response and empirical measurements. These FET definitions are stored in a

separate file that must be included in every circuit definition. This separation ensures the

latest updated values are automatically used every time a SPICE simulaﬁon is executed. A

listing of the CMOS FET model definitions is included as Figure 111. Reference 9 contains

a detailed description of each of the FET model parameters.

* cmos.cir ==> CMOS PFET & NFET model definitions

MOSIS PARAMETRIC TEST RESULTS
DATE: 1 OCTOBER 1997

RUN: N78K

VENDOR: ORBIT

TECHNOLOGY: SCNA20

FEATURE SIZE: 2.0 MICRONS

* Ok ok % * ¥

.MODEL CMOSN NMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=1
VT0=0.8309 DELTA=3.2570E+00 LD=3.2850E-07 KP=6.2842E-05

UO=742.5 UEXP=1.9200E-01 UCRIT=2.1830E+04 RSH=6.1490E+00

GAMMA=0.5612 NSUB=6.7970E+15 NFS=9.0930E+10 VMAX=5.7540E+04
LAMBDA=4.2800E-02 CGDO=4.1704E-10 CGS0=4.1704E-10

CGBO=3.4581E-10 CJ=1.2204E-04 MJ=6.3602E-01 CJISW=5.5150E~-10
MJISW=2.5691E-01 PB=4.4514E-01

Weff = Wdrawn - Delta W

The suggested Delta W is 2.0000E-09

* %k b+ + o+ o+

.MODEL CMOSP PMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=-1
VTO=-0.9891 DELTA=1.2110E+00 LD=3.7130E-07 KP=1.7503E-05

U0=206.8 UEXP=2.8220E-01 UCRIT=1.1030E+05 RSH=1.0210E-01

GAMMA=0.7803 NSUB=1.3140E+16 NFS=7.1500E+11 VMAX=1.2110E+05
LAMBDA=5.3880E-02 CGDO=4.7138E-10 CGS0O=4.7138E-10

CGBO=3.5113E-10 CJ=3.2670E-04 MJ=6.2773E-01 CJIJSW=3.7671E-10
MJISW=1.9873E-01 PB=9.0000E-01

Weff = Wdrawn - Delta_W

The suggested Delta_W is 2.3340E-08

ok ko 4+ + + 4

Figure 111. CMOS PFET and NFET SPICE model definitions.

158

2. Fundamental Logic Element Definitions

The TIC circuits are defined as combinations of discrete logic elements, thus each
element must be defined in terms of the FETs used to implement the logic function. These
fundamental logic element definitions are required in every TIC component source file.
SPICE provides a convenieﬁt method for defining a collection of FETSs as an element using
the sub-circuit function. The file listing in Figure 112 defines all of the logic elements used
in the SPICE simulation source files. This file is imported in every TIC component file
using the . INCLUDE command. The CMOS FET definitions are available to all soﬁrcc

files since the sub-circuit file includes the CMOS FET definition file as one of its first lines.

* subckt.cir ==> CMOS SUB-CIRCUITS for inclusion into other models

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Inverter Circuit

* define INV - In Out Vdd Gnd
.SUBCKT INV i o v g

Ma v i o v CMOSP W=6U L=2U
Mb o i g g CMOSN W=3U L=2U
.ENDS

* Inverter Circuit - extra large
* define INVx - In Out vdd Gnd
.SUBCKT INVx i o v g

Ma v 1 o v CMOSP W=12U L=2U

Mb o-i g g CMOSN W=6U L=2U

.ENDS

* Transmission Gate Circuit

* define XGATE - In Out Pgate Ngate Vdd Gnd
.SUBCKT XGATE i opnvg

Ma i p o v CMOSP W=6U L=2U

Mb i n o g CMOSN W=3U L=2U

.ENDS

* 2-input NAND Circuit

* define NAND2 - Ain Bin Out vdd Gnd
.SUBCKT NAND2Z a bo v g

Ma v a o v CMOSP W=6U L=2U

Mb 0 a 2 g CMOSN W=3U L=2U

Mc v b o v CMOSP W=6U L=2U

Md 2 b g g CMOSN W=3U L=2U

.ENDS .

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.

159

* 2-input AND Circuit

* define AND2 - Ain Bin Out vdd Gnd
.SUBCKT AND2 a bo v g

Xla a b 2 v g NAND2

Xia 2 o v g INV

.ENDS

* 3-input NAND Circuit
* define NAND3 - Ain Bin Cin Out vdd Gnd
.SUBCKT NAND3 a bc o v g

Ma v a o v CMOSP W=6U L=2U
Mb o a 2 g CMOSN W=3U L=2U
Mc v b o v CMOSP W=6U L=2U
M3 2 b 3 g CMOSN W=3U L=2U
Me v ¢ o v CMOSP W=6U L=2U
Mf 3 ¢ g g CMOSN W=3U L=2U
.ENDS

* 3-input AND Circuit

* define AND3 - Ain Bin Cin Out Vdd Gnd
.SUBCKT AND3 a bcovg

Xla a b ¢ 2 v g NAND3

Xia 2 o v g INV

.ENDS

* 4-input NAND Circuit
* define NAND4 - Ain Bin Cin Din Out vdd Gnd
.SUBCKT NAND4 a bc dovyg

Ma v a o v CMOSP W=6U L=2U
Mb o a 2 g CMOSN W=3U L=2U
Mc v b o v CMOSP W=6U L=2U
Md 2 b 3 g CMOSN W=3U L=2U
Me v ¢ o v CMOSP W=6U L=2U
Mf 3 ¢ 4 g CMOSN W=3U L=2U
Mg v 4 o v CMOSP W=6U L=2U
Mh 4 & g g CMOSN W=3U L=2U
.ENDS

* 4-input AND Circuit

* define AND4 - Ain Bin Cin Din Out vdd Gnd
.SUBCKT AND4 a bcdovg

Xla a b ¢ d 2 v g NAND4

Xia 2 o v g INV

.ENDS

* 2-input NOR Circuit

* define NOR2 - Ain Bin Out Vdd Gnd
.SUBCKT NOR2 a bo v g

Ma v a 2 v CMOSP W=6U L=2U

Mb o a g g CMOSN W=3U L=2U

Mc 2 b o v CMOSP W=6U L=2U

Md o b g g CMOSN W=3U L=2U

.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.
(continued)

160

* 2-input OR Circuit

* define OR2 - Ain Bin Out vdd Gnd
.SUBCKT OR2 a bo v g

Xla a b 2 v g NOR2

Xia 2 o v g INV

.ENDS

* 3-input NOR Circuit
* define NOR3 - Ain Bin Cin Out Vvdd Gnd
.SUBCKT NOR3 a bco v g

Ma v a 2 v CMOSP W=6U L=2U
Mb o a g g CMOSN W=3U L=2U
Mc 2 b 3 v CMOSP W=6U L=2U
Md o b g g CMOSN W=3U L=2U
Me 3 ¢ o v CMOSP W=6U L=2U
Mf o ¢ g g CMOSN W=3U L=2U
.ENDS ’

* 3-input OR Circuit

* define OR3 - Ain Bin Cin Out vdd Gnd
.SUBCKT OR3 abcovg

Xla a b ¢ 2 v g NOR3

Xia 2 o v g INV

.ENDS '

* D-Flip/Flop using transmission gates
* define DFLOPG - Din CLKin Qout nQout vdd Gnd
.SUBCKT DFLOPG d clk gna v g
Ma v 3 6 v CMOSP W=6U L=2U
Mb 7 3 g g CMOSN W=3U L=2U
Mc 6 5 2 v CMOSP W=6U L=2U
Md 2 clk 7 g CMOSN W=3U L=2U
Xga d 2 clk 5 v g XGATE
3 4 5 clk v g XGATE
Xgc 4 ng clk 5 v g XGATE
Xia g ng v g INV
Xib ¢lk 5 v g INV
Xic 2 3 v g INV
Xid 4 g v g INV
.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.
(continued)

161

* Gated D-Flip/Flop w/ nClear using transmission gates
* define DFLOPGC - Din CLKin nCin Qout nQout vdd Gnd
.SUBCKT DFLOPGC d clk nc g ng v g
Ma v 2 3 v CMOSP W=6U L=2U

Mb 3 2 9 g CMOSN W=3U L=2U

Me v nc 3 v CMOSP W=6U L=2U

Mf 9 nc g g CMOSN W=3U L=2U

Mg v 2 10 v CMOSP W=6U L=2U

Mh 11 3 g g CMOSN W=3U L=2U

1Mi 10 5 2 v CMOSP W=6U L=2U

Mj 2 clk 11 g CMOSN W=3U L=2U

Mk 12 4 g v CMOSP W=6U L=2U

Ml g 4 g g CMOSN W=3U L=2U

Mo v 6 12 v CMOSP W=6U L=2U

Mp g 6 g g CMOSN W=3U L=2U

Xga d 2 clk 5 v g XGATE

Xgb 3 4 5 clk v g XGATE

Xgc 4 ng clk 5 v g XGATE

Xia g ng v g INV

Xib ¢clk 5 v g INV

Xic nc 6 v g INV

.ENDS

* Gated D-Flip/Flop w/ nClear & nPreset using transmission gates
* define DFLOPGCP - Din CLKin nCin nPin Qout nQout Vdd Gnd
.SUBCKT DFLOPGCP d clk nc np g ng v g

Ma 8 2 3 v CMOSP W=6U L=2U
Mb 3 2 9 g CMOSN W=3U L=2U
Mc v 7 8 v CMOSP W=6U L=2U
Md 3 7 9 g CMOSN W=3U L=2U
Me v nc 3 v CMOSP W=6U L=2U
Mf 9 nc g g CMOSN W=3U L=2U
Mg v 2 10 v CMOSP W=6U L=2U
Mh 11 3 g g CMOSN W=3U L=2U
Mi 10 5 2 v CMOSP W=6U L=2U
Mj 2 clk 11 g CMOSN W=3U L=2U
Mk 12 4 g v CMOSP W=6U L=2U

Ml g 4 13 g CMOSN W=3U L=2U
Mm 12 np g v CMOSP W=6U L=2U
Mn 13 np g g CMOSN W=3U L=2U
Mo v 6 12 v CMOSP W=6U L=2U
Mp g 6 g g CMOSN W=3U L=2U

Xga d 2 ¢clk 5 v g XGATE
Xgb 3 4 5 clk v g XGATE
Xge 4 ng clk 5 v g XGATE

Xia g ng v g INV

Xib clk 5 v g INV
Xic nc 6 v g INV

Xid np 7 v g INV

.ENDS

* Toggle Flip/Flop w/ nClear using transmission gates
* define TFLOPC - Tin CLKin nCin Qout nQout Vdd Gnd
.SUBCKT TFLOPC t clk nc gqng v g ‘

Xla t g 2 v g XOR2

Xda 2 clk nc ¢ ng v g DFLOPC

.ENDS

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.
(continued) '

162

Ma
Mb
Mc
Md
Me
MEf
Mg
Mh
Mi
Mj
Mk
M1

Wd S0 ung o g g
gCoMWNDD P DTWE

Ma
Mb
Mc
Md
Me
Mf
Mg
Mh
Mi
Mj
Mk
M1

wWwd 9o und oo g N

oMWY wo' e e
QWY WO LY o QA N

Ma v
Mb 2

s BRRER
o o0
o o VI

.ENDS

a

a

.ENDS

s

n NN

S

QWwWQ 90 UIQ "0 A N

edaoQQ g < <Q

O 000w

* 2-input XOR Circuit
* define XOR2 - Ain Bin Out vdd Gnd
.SUBCKT XOR2 a b

v CMOSP W=6U
CMOSN W=3U
CMOSP W=6U
CMOSP W=6U
CMOSN W=3U
CMOSN W=3U
CMOSP W=6U
CMOSP W=6U
CMOSN W=3U
CMOSN W=3U
CMOSP W=6U
CMOSN W=3U

* 2-input XNOR Circuit
* define XNOR2 - Ain Bin Out Vdd Gnd
.SUBCKT XNOR2 a bo v g

.CMOSP W=6U
CMOSN W=3U
CMOSP W=6U
CMOSP W=6U
CMOSN W=3U
CMOSN W=3U
CMOSP W=6U
CMOSP W=6U
CMOSN W=3U
CMOSN W=3U
CMOSP W=6U
CMOSN W=3U

ndoaq4daag<da <

* 2-input MUX Circuit
* define MUX - Ain Bin Sel
.SUBCKT MUX a bs ovg

v CMOSP W=6U
g CMOSN W=3U
v CMOSP W=6U
g CMOSN W=3U
v CMOSP W=6U
g CMOSN W=3U

ovag

dagcdadgadacaocgcacaa

L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U
L=2U

L=2U
L=2U
L=2U
L=2U
L=2U
L=2U

Out vdd Gnd

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions.
(continued)

163

B. SERTAL DATA RECEIVER

The SPICE model for the Serial Data Receiver is a combination of the models for its
subordinate components. A full source code listing is provided in Figure 113. The Sérial
Data Receiver response is shown in Figure 114. The command packet“0011111110
1” is simulated into the serial data input for the receiver. When the last bit of the valid
command is received, the receiver latches the command onto the command bus and
provides a bus data valid signal to the other TIC modules. The bus data valid signal is held
for ten clock cycles and it is then cleared in preparation for the next possible command
packet. The command bus values are not changed until another command is received or
until the system is reset. The clearing action at 1.8 uS in Figure 114 is caused by a system

reset signal inserted to verify the Serial Data Receiver reset response.

* SerialDataReceiver.cir ==> Serial Data Receiver Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

va d 0 PWL(O 5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0
799.5n 0 801.5n 5 1 5)

Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0)

Vclk clk 0 PULSE(O 5 24.5N 1N 1IN 24N 50N)

* Twelve-bit shift register
Xsd0 @ ¢clk nR i0 ni0 1 0 DFLOPGC
Xsdl i0 clk nR il nil 1 0 DFLOPGC

Xsd2 il clk npC i2 ni2 1 0 DFLOPGC
Xsd3 i2 clk npC i3 ni3 1 0 DFLOPGC
Xsd4 i3 clk npC i4 ni4 1 O DFLOPGC
XsdS i4 clk npC i5 ni5 1 0 DFLOPGC
Xsd6é i5 clk npC i6 nié 1 0 DFLOPGC
Xsd7 i6 clk npC i7 ni7 1 0 DFLOPGC
Xsd8 i7 clk npC i8 ni8 1 0 DFLOPGC
Xsd9 i8 clk npC i9 ni% 1 0 DFLOPGC

Xsd1l0 i9 clk npC 110 nil0 1 0 DFLOPGC
Xsdll i10 clk npC ill nill 1 0 DFLOPGC
Xsi rst nR 1 0 INV

Xsnr rst pC npC 1 0 NOR2

Figure 113. Serial Data Receiver SPICE model source code.
164

* Bight-bit data latch

X140 i2 latch nR g0 ng0 1 0 DFLOPGC
X1d1 i3 latch nR gl ngl 1 0 DFLOPGC
X1d2 i4 latch nR g2 ng2 1 0 DFLOPGC
X1d3 i5 latch nR g3 ng3 1 0 DFLOPGC
X1d4 i6 latch nR g4 ng4 1 0 DFLOPGC
X1d5 i7 latch nR g5 ng5 1 0 DFLOPGC
X146 i8 latch nR g6 ng6 1 0 DFLOPGC
X1d7 i9 latch nR g7 ng7 1 0 DFLOPGC

* Input stream validity check
Xvx0 11 i2 xo0 1 0 XOR2

Xvxl i3 i4 x0l 1 0 XOR2

Xvx2 15 i6 xo02 1 0 XOR2

Xvx3 17 18 x03 1 0 XOR2

Xvx4 19 xo03 x04 1 0 XOR2

Xvx5 xo00 xo0l xo05 1 0 XOR2

Xvx6 x02 x04 x06 1 0 XOR2

Xvx7 x05 xo06 xo07 1 0 XOR2

Xva0 i0 111 ao0 1 0 NAND2

Xval nil0 xo7 aol 1 0 NAND2
Xvn0 ao0 aol frm 1 0 NOR2

XviO0 frm nfrm 1 0 INV

Xvnl nbdv nil0 i1l nol 1 0 NOR3
Xvn2 nfrm clk latch 1 0 NOR2
Xvn3 rst nol no3 1 0 NOR2

Xvd0 frm latch no3 bdv nbdv 1 0 DFLOPGC
Xva2 bdv frm pC 1 0 AND2

* Simulation Parameters
.TRAN .1N 2000N 0 1n

.END

Figure 113. Serial Data Receiver SPICE model source code. (continued)

165

_clk

Serial Data Receiver Response

AT

q7

q6

q5

voltage [V]

q4

q3

q2

ql

q0

N

T 1 1 | !

0.6 0.8 1. 1.2 1.4
time [uS]

1.6

1.8

- Figure 114. Serial Data Receiver SPICE model response.

166

1. Twelve-Bit Input Shift Register

The SPICE model for the twelve-bit input shift register implements the structural
design of Figure 99. A full source code listing is provided in Figure 115. The command
packet“0011111110 1”is simulated into the serial data input for the shift register. The
shift register response is shown in Figure 116, which illustrates the input bits shift one
position at every clock cycle. The clearing action at 1.7 uS in Figure 116 is caused by a
partial-clear signal; demonstrating that only the highest ten bits are cleared. The clearing
action at 1.8 uS is caused by a reset signal; demopstrating that all bits are cleared for a

system reset.

* shiftl2.cir ==> Twelve-Bit Shift Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

vd d 0 PWL(0 S5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0
799.5n 0 801.5n 5 1 5)

Vrst rst 0 PWL(O 0 1795n 0 1796n 5 1799n 5 1800n 0)

Vpe pC O PWL(0 O 1695n 0 1696n 5 1699n 5 1700n 0)

Veclk clk 0 PULSE(O 5 24.5n 1n 1n 24n 50n)

* Twelve-bit shift register
Xd0 d clk nR g0 ng0 1 0 DFLOPGC
Xdl g0 clk nR gl ngl 1 0 DFLOPGC

Xd2 gl clk npC g2 ng2 1 0 DFLOPGC
Xd3 g2 c¢lk npC g3 ng3 1 0 DFLOPGC
Xd4 g3 clk npC g4 ng4 1 0 DFLOPGC
Xd5 g4 clk npC g5 ng5 1 0 DFLOPGC
Xd6 g5 clk npC g6 ngé 1 0 DFLOPGC
Xd7 g6 clk npC g7 ng7 1 0 DFLOPGC
Xd8 g7 clk npC g8 ng8 1 0 DFLOPGC
Xd9 g8 clk npC g2 ng9 1 0 DFLOPGC

Xd1l0 @9 c¢lk npC ql0 ngl0 1 0 DFLOPGC
'Xdll gl0 clk npC gll ngll 1 0 DFLOPGC
Xi rst nR 1 0 INV

Xnr rst pC npC 1 0 NOR2

* Simulation Parameters
.TRAN .1n 2000n 0 1n

. END

Figure 115. Twelve-Bit Input Shift Register SPICE model source code.
167

Twelve-Bit Shift Register Response

A A
b o

0 1 L ! ! ! L
q3
sf‘l_p}j | J’ B s_s_l
0_4 I] I 1] 1 I I
5£q T " T] | — T
E C
g O—q"s ——. | — | - Lt] | | L S
S 5f T eSS el R e RS IS | i
s | | 1l 5
0 3 !] ! l I ! —
5:q T — e e e e L A T 7
ot 7 l |J | 1 jl :] ! e]
q
5F T e e e S T]
0.—‘—‘—‘~——}—‘—‘—‘~!| ! J—‘—|J i Ll 1 I : .]
s:qs T T R e T e T ey T 3
o 19(Lt L ‘.F i] ‘—J | ! s s]
5:q T T e T e S ——— T 7
o: AU WO W U WO S W LJ’F [AJ | [L | I 1
5:q1° T T e e e e T 7
o: S OO O T U N W |F| = | | _AJ \ \ eyt]
qll
£ T T T : T : = ¥ T 7
ok + t J | ——!—x' 1 Ul ! f 3
0 0.2 - 04 0.6 0.8 1 1.2 14 1.6 1.8
time [uS]

Figure 116. Twelve-Bit Input Shift Register SPICE model response.

168

2. Eight-Bit Data Latch

The SPICE model for the eight-bit data latch implements the structural design of
Figure 100. A full source code listing is pfovided in Figure 117. Input for checking the data
latch is shown in Figure 118. Various command values are presented to the data latch and a
clock pulse provides the latch command. The eight-bit data latch response in Figure 119
shows that the various values are locked onto the command bus as required. The periodic

clearing of all bits is caused by a reset signal that is pulsed at every other latch cycle.

* latch8.cir ==> Eight-Bit Data Latch Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
vDS 1 0 5

* Input Signals

vi0 i0 O PWL(0 5 299.5n 5 301.5n 0 499.5n 0 501.5n 5 1 5)
vil il O PWL(0 5 399.5n 5 401.5n 0 699.5n 0 701.5n 5 1 5)
Vvi2 i2 0 PWL(0 5 499.5n 5 501.5n 0 899.5n 0 901.5n 5 1 5)
vi3 i3 0 PWL(0 5 599.5n 5 601.5n 0 1099.5n 0 1101.5n 5 1 5)
vi4 i4 O PWL(0O 5 699.5n 5 701.5n 0 1299.5n 0 1301.5n 5 1 5)
ViS5 i5 0 PWL(0 5 799.5n 5 801.5n 0 1499.5n 0 1501.5n 5 1 5)
vi6é i6 O PWL(0 5 899.5n 5 901.5n 0 1699.5n Q0 1701.5n 5 1 5)
vi7 i7 O PWL(0 5 999.5n 5 1001.5n 0 1899.5n 0 1901.5n 5 1 5)

Vrst rst 0 PULSE(5 0 2.5n 1In 1n 95n 100n)
vlat latch 0 PULSE(0 5 24.5n 1n 1ln 24n 50n)

* Bight-bit data latch

Xd0 i0 latch nR g0 ng0 1 0 DFLOPGC
Xdl il latch nR gl ngl 1 0 DFLOPGC
Xd2 i2 latch nR @2 ng2 1 0 DFLOPGC
Xd3 i3 latch nR g3 ng3 1 0 DFLOPGC
Xd4 i4 latch nR g4 ng4 1 0 DFLOPGC
Xd5 i5 latch nR g5 ng5 1 0 DFLOPGC
Xd6 i6 latch nR g6 ng6 1 0 DFLOPGC
Xd7 i7 latch nR g7 ng7 1 0 DFLOPGC

Xi rst nR 1 0 INV '

* Simulation Parameters
.TRAN .l1ln 2000n 0 1n

.END

Figure 117. Eight-Bit Data Latch SPICE mbdel source code.

169

Eight-Bit Data Latch Input

_latch
o L
i0
5 I T T T T T T
0: | T 1 1 | Il { I
il
5 T T T I I I I
0: { I I H 1 | I
i2
5 T T T T I 1 I I
0: | | I T L l I 1
— i3
S 5 T I T T T T T
@ |
m F
g [4!
g 1] t I T T I]
i4
5 T I T i T I T
[
0 C 1 i ! T I T | Il
iS5
5 I T T T T T 1
o: ! | { I T 1 |
i6
5 C T I T I T T T T
0: 1 i | 1 T T T T
iz
5 I I T I T T I
0: I | 1 i I T T
0 0.2 04 0.6 0.8 1 1.2 14 1.6

time [uS]

Figure 118. Eight-Bit Data Latch SPICE model input.

170

Eight-Bit Data Latch Output

time [uS]

_latch

5: .
A
q0

BN j?ﬁ R EEEEE
o;_ U ou : LU h] d Uoouo4d U U u
ql

s-ﬁ—_lmﬁ T — A A (— p— hh
o~ U L U r L g LJ L U J U L L] U
q2

s_ﬂ__*__j[_iﬂ T T T — —T — — o pp— —
o W W U L | . U g J"L 2 U

R R RN RE

|

go_ L U U L U . . L L L ; uooou
4

S] ' ' *f*"f*ﬁ
oY = “ - - = I I T U S
q5

5:(_.4_1_._1#77_1__ T T T p— pa—
o U U u pou u U , : , L U
6

S minininin [| ' e T
ol U U I U U . l [. iU
q7 *

5-————4r~1r—1r~“—jr——-ﬂ§J—-— ‘ ' ' T]
%%z 04 06 08 1 12 14 16 18 2

Figure 119. Eight-Bit Data Latch SPICE model response.

171

3. Input Stream Validity Check

The SPICE model for the input stream validity check implements the structural
design of Figure 101. A full source code ﬁsting is provided in Figure 120. Input for testing
the validity checker is shown in Figure 121. The command packet“00111111101”1s
simulated shifting through the input shift register. The input stream ValiQity check response
in Figure 122 shows that a latch signal is generated when the command packet formatting
requirements are met. This locks the command byte onto the command bus and presents 2

bus data valid signal for ten clock cycles. When the bus data valid flag is set, the partial

clear signal is produced.

172

* invalid.cir ==> Input Stream Validity Check Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals) :
Vi0 i0 0 PWL(O O 25n 0 26n 5 325n 5 326n 0 425n 0 426n 5 775n 5 776n 0
) 825n 0 826n 5 1 5)
vil il O PWL(0 O 75n 0 76n 5 375n 5 376n 0 475n 0 476n 5 825n 5 826n 0
875n 0 876n 5 1 5)
Vi2 i2 0 PWL(O 0 125n O 126n 5 425n 5 426n 0 525n 0 526n 5 860n 5 861n
925n 0 926n 5 1 5)
Vi3 i3 0 PWL(0 0 175n 0 176n 5 475n 5 476n 0 575n 0 576n 5 860n 5 861n

975n 0 976n 5 1 5)
Vi4 i4 O PWL(O O 225n 0 226n 5 525n 5 526n 0 625n 0 626n 5 860n 5 861n
1025n 0 1026n 5 1 5)
ViS5 i5 0 PWL(0 0 275n 0 276n S 575n 5 576n 0 675n 0 676n 5 860n 5 861n
1075n 0 1076n 5 1 5)
Vié i6 0 PWL(0 O 325n 0 326n 5 625n 5 626n 0 725n 0 726n 5 860n 5 861in
1125n 0 1126n 5 1 5)
Vvi7 i7 0 PWL(0O O 375n 0 376n 5 675n 5 676n 0 775n 0 776n 5 860n S5 86ln
1175n 0 1176n 5 1 5)
Vi8 i8 0 PWL(0 O 425n 0 426n 5 725n 5 726n 0 825n 0 826n 5 860n 5 861in
' 1225n 0 1226n 5 1 5)
vig i9 PWL(0 0 475n 0 476n 5 775n 5 776n 0 1275n°'0 1276n 5 1 5)
Vil0 110 O PWL(0 O 525n 0 526n 5 825n 5 826n 0 1325n 0 1326n 5 1 5)
5 860n 5 861n 0 1375n 0 1376n 5 1 5)

0
0
vill i11 0 PWL(0 O 575n 0 576n
Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0)
Vclk clk 0 PULSE(0 5 24.5n 1n 1n 24n 50n)
* Input stream validity check
Xx0 il i2 xo0 1 0 XOR2
Xx1 i3 i4 xol 1 0 XOR2
Xx2 15 16 xo02 1 0 XOR2
Xx3 i7 i8 x03 1 0 XOR2
Xx4 19 xo03 x04 1 0 XOR2
Xx5 x00 xol xo5 1 0 XOR2
Xx6 %02 x04 x06 1 0 XOR2
Xx7 x05 x06 x07 1 0 XOR2
Xa0 i0 i1l ao0 1 0 NAND2
Xal nil0 xo07 aol 1 0 NAND2
Xn0 aol aol frm 1 0 NOR2
Xi0 110 nil0 1 0 INV
Xil frm nfrm 1 0 INV
Xnl nbdv nil0 ill nol 1 0 NOR3
Xn2 nfrm clk latch 1 0 NOR2
Xn3 rst nol no3 1 0 NOR2
Xd0 frm latch no3 bdv nbdv 1 0 DFLOPGC
Xa2 bdv frm pC 1 0 AND2

* Simulation Parameters
.TRAN .1ln 2000n 0 1n

.END

Figure 120. Input Stream Validity Check SPICE model source code.

173

Input Stream Validity Check Input

%E
=
IE
=
IE
=
=

|
—

o n ?—_
—

~

— =
L

voltage [V]
- n
\ ‘ 7] r]

time [uS]

: I 1 !
5 i6 T !——*7 T T
0 !) ! 1 1 ! !]
57— : r '
1] + ! ! ! ; !) | !
5 —i8 T T '——4— T F T T ==
0 1 ! + (| | !
5 i2 T T T T T T - T
0 : : ! t : t ! | L
i10

5 T T T T T T T
0 t t 1 | t t ’ } I !
5 i1l T T Y T T T
0 1 t | 1 ; 1 I ! I

] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 121. Input Stream Validity Check SPICE model input.

174

volitage [V]

Input Stream Validity Check Output

s CIk | T T T
o 1 1 ! | }
5 —IﬂCh I T 1 i I I T 1} T
0 . 1] 1 I ! |] | {
5 _—b_us_D_aqa—v'a—lld ‘ T T T [L T T T T T
o I} | 1 | [1 | 1 Il
partialClear
5 T T] T T T T T
0 i 1 t 1 _ { L 1 1 1.
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
time [uS]

Figure 122. Input Stream Validity Check SPICE model response.

175

C. COMMAND DECODER AND CONTROLLER

The SPICE model for the Command Decoder and Controller is a combination of the
models for its subordinate components. A full source code listing is provided in Figure 123.
The command sequence 01001100 - 10001100-11001100-01111111is
simulated on the command bus with the corresponding bus valid flag. The Command
Decoder and Controller control signal response is shown in Figure 124 and the register
value response is shown in Figure 125.

The control signal response in Figure 124 illustrates the operating state transitions
and the command signals generated by the Command Decoder and Controller. The initial
command byte corresponds to the assigned address and causes the controller Fo shift to state
1. When the second byte is received, it is decoded as a command to set the pulse width
value, which shifts the controller to state 3. A pulse width latch signal is issued because the
pulse width register does not match the command bus value. Once the value is locked into
the register, the falling pulse width difference ﬂég clears the latch signal. Output is enabled
when the new pulse width is latched, allowing the Tactor Power Control module to start
using the new pulse width value. The third byte decodes as a command to set the repetition
period, which requires no change in the control state. A repetition period latch command is
issued because the repetition period register does not match the command bus value. Once
the value is locked into the register, the falling repetition period difference flag clears the
latch signal. The fourth byte is the “all call” address. The previous set of register
commands is now complete and the controller shifts to state O to process the next command
set because the command received in control state 3 is an address command. The next clock

cycle shifts the controller to state 1 because the “all call” is a valid address and the controlier

176

is now in state 0. The controller shift to state O just before 2 uS is caused by a system fcset
signal, which also disables the output flag and clears the storage registers.

The register response in Figure 125 illustrates how the stored values change in the
pulse width and repetition period registers. At 0.5 uS, the pulse width latch signal caused
the pulse width register to lock in the commanded value. At 1 uS, the repetition period latch
signal caused the repetition period register to lock in the commanded value. Just before 2

uS, a system reset signal clears both storage registers.

177

va0
val
vaz
va3
Va4
va5s
Vab

* Co
Xcdo
Xcdl
Xcal
Xcal
Xca2
Xcio
Xco0
Xca3
Xcil
Xcad
Xcab
Xcab
Xcol
Xco2
Xca7
Xca8
Xcal

Xco3
Xco4
Xco5
Xci2
Xecil3

ado
adl
adz2
ad3
ad4
ad5
adé6

OO OO OO0OO0O

mmand
aco2
ico0

acob
oco3
aco3
aco7
aco8

* Power Supplies

VDS 1 0 5

* Input Signals
vio i0 0 PWL(O
vil i1 O PWL(O
vi2 i2 0 PWL(O
vi3 i3 0 PWL(O
vi4 i4 O PWL(O
vis i5 0 PWL(O
vVié 16 0 PWL(O
vi7 i7 0 PWL(O

VbV bV 0 PWL(0 O
0 1001ln 5 1400n 5 1401n 0 1500n 0 1501n 5 1900n 5 1%01n O 1 O)
Vrst nRst 0 PWL(0 0 10n 0 1ln 5 1975n 5 1976n 0 1979n 0 1980n 5)

Velk clk 0 PULSE(O 5 24.5n 1n 1n 24n 50n)

Mmoouwmoo

* CmdDecodeCont.cir ==> Command Decoder & Controller Transient Character.

* Logic Gate model definitions
.INCLUDE subckt.cir

1450n 0 1451n 5 1 5)

1450n 0 1451n 5 1 5)

1 5)

1 5)

1450n 0 1451n 5 1 5)

1450n 0 1451n 5 1 5)

450n 5 451n 0 950n 0 951n 5 1 5)

450n 0 451n 5 1450n 5 1451in O 1 0)

14n 0 15n 5 400n 5 401ln 0 500n 0 501n 5 900n 5 901n 0 1000n

ouvVMoouLMuUto o

sequence controller

¢clk nRst s0 ns0O 1 0 DFLOPGC
clk nRst sl nsl 1 0 DFLOPGC
i7 s0 aco0 1 0 NAND2

nsl s0 acol 1 0 NAND2

aco0 acol oco0 aco2 1 0 NAND3
aco0 ico0 1 0 INV

i7 s0 nvalidaddr oco0 1 0 OR3

i7 bV s0 sl aco3 1 0 AND4

i6 ni6 1 0 INV

i7 bV nié aco4d 1 0 AND3

acod4 ocol oco2 aco5 1 0 NAND3
nRst aco5 aco6 1 0 NAND2

i3 i4 i5 ocol 1 0 NOR3

i0 il i2 oco2 1 0 NOR3

ni6 pwbhiff aco3 aco7 1 0 NAND3
aco3 i6 rpDiff aco8 1 0 NAND3
aco3 pwDiff rpDiff aco9 1 0 NAND3

Xcal0d aco7 aco8 aco9 acol0 1 0 NAND3

acol0 oco3 1 0 OR2
oco5 enOut 1 0 NOR2
enOut oco5 1 0 NOR2
pwLat 1 0 INV
rpLat 1 0 INV

.

Figure 123. Command Decoder and Controller SPICE model source code.

178

* Address comparator

Xax0 i0 adl xao0 1 0 XNOR2
Xaxl il adl xaol 1 0 XNOR2
Xax2 12 ad2 xao2 1 0 XNOR2
Xax3 i3 ad3 xao3 1 0 XNOR2
Xax4 i4 ad4 xaocd 1 0 XNOR2
Xax5 i5 ad5 xao5 1 0 XNOR2
Xax6 i6 adé xao6 1 0 XNOR2

Xaal xao0 xaol xao2 aaol0 1 0 NAND3
Xaal xao3 xao4 xao5 aaol 1 0 NAND3
Xaa2 xao6 ni7 aao2 1 0 NAND2

Xaa3 i6 ni7 aao3 1 0 NAND2

Xaa4 i3 i4 i5 aao4 1 0 NAND3

Xaa5 i0 i1 i2 aao5 1 0 NAND3

Xao0 aaol aaol aao2 ocaol0 1 0 NOR3
Xaol aao3 aao4 aaob5 ocaol 1 0 NOR3
Xao2 oao0 oaol nvValidaddr 1 0 NOR2
Xai i7 ni7 1 0 INV

* Pulse width register

Xpd0 i0 pwLat nRst pw0 npw0 1 0 DFLOPGC
Xpdl il pwLat nRst pwl npwl 1 0 DFLOPGC
Xpd2 i2 pwLat nRst pw2 npw2 1 0 DFLOPGC
Xpd3 i3 pwLat nRst pw3 npw3 1 0 DFLOPGC
Xpd4 i4 pwLat nRst pwéd npwéd 1 0 DFLOPGC
Xpd5 15 pwLat nRst pwb5 npw5 1 0 DFLOPGC

Xpx0 10 pwO xpo0 1 0 XOR2
Xpx1l il pwl xpol 1 0 XOR2

Xpx2 i2 pw2 xpo2 1 0 XOR2

Xpx3 i3 pw3 xpo3 1 0 XOR2

Xpx4 i4 pwd xpod 1 0 XOR2

Xpx5 i5 pwb xpo5 1 0 XOR2

Xpo0 xpo0 xpol xpo2 opo0 1 0 NOR3
Xpol xpo3 xpod xpo5 opol 1 0 NOR3
Xpal opo0 opol pwDiff 1 0 NAND2

* Répetition period register

Xrd0 i0 rpLat nRst rpO nrp0 1 0 DFLOPGC
Xrdl il rpLat nRst rpl nrpl 1 0 DFLOPGC
Xrd2 i2 rpLat nRst rp2 nrp2 1 0 DFLOPGC
Xrd3 i3 rplat nRst rp3 nrp3 1 0 DFLOPGC
Xrd4 i4 rpLat nRst rp4 nrp4d 1 0 DFLOPGC
Xrd5 i5 rpLat nRst rp5 nrp5 1 0 DFLOPGC
Xrx0 i0 rp0 xro0 1 0 XOR2
Xrxl il rpl xrol 1 0 XOR2
Xrx2 i2 rp2 xro2 1 0 XOR2
Xrx3 i3 rp3 xro3 1 0 XOR2
Xrx4 14 rp4 xro4 1 0 XOR2
Xrx5 i5 rp5 xro5 1 0 XOR2

Xro0 xro0 xrol xro2 oro0 1 0 NOR3
Xrol xro3 xro4 xro5 orol 1 0 NOR3
Xra0 oro0 orol rpDiff 1 0 NAND2

* Simulation Parameters
.TRAN .1n 2000n 0 1n

.END

Figure 123. Command Decoder and Controller SPICE model source code. (continued)

179

Command Decoder and Controller Control Response

enOuteut

o I T | 1

nValidAddr i
5 T T I T I I T T

voltage [V]

pwDiff

0 I [I T T I T | |
pratclh :

o T 1 I T T I T) 1
rpDiff :

0 £ ! 1 | I I — ! 1

rpLatctl\

0 T T T T 1 1 T T 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time [uS]

Figure 124. Command Decoder and Controller SPICE model Control response.

180

Command Decoder and Controller Register Response

pw5
5 T T T T T T T T T
— , ; : -+ ; 1 -
T T T T T T T T T
— : . : ! : : . :
T . ; . : : ;
T T (' 1 1 1 1 L | 1
pw2
T T T
- (7 ! I ! 1] 1 !
pwil
T 7 T f I T T T T
pwo l
T 7 T T T T T T 1
=
w T
=]
s rps I li i T T T T T I
©
>
— - T :) : 1 :
T T T T T T T T T
— . : . - . 1 :
T T T T T ne T T
1 T T f L L I |
rp2
I T T [IF
T T 1 1 ! i 1
rpl
1 I T T T T T T T
— ; = - » i_ i ,
T T T T 1 T T T T
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

time [uS}]

Figure 125. Command Decoder and Controller SPICE model Register response.

181

1. Command Sequence Controller

The SPICE model for the command sequence controller implements the structural
design of Figure 102. A full source code listing is provided in Figure 126. The command
sequence 01001100-10001100-11001100-01111111issimulated on the
command bus with the corresponding bus valid flag. The response in Figure 127 illustrates
the operating state transitions and the command signals generated by the command sequence
controller. The initial command byte corresponds to the assigned address and causes the
controller to shift to state 1. When the second byte is received, it is decoded as a command
to set the pulse width value; which shifts the controller to state 3. A pulse width latch signal
is now issued since the pulse width register does not match the command bus value. Once
the value is locked into the register, the falling pulse width difference flag clears the .latch
signal. Output is enabled when the new pulse width is latched, allowing the Tactor Power
Control module to start using the new pulse width value.‘ The third byte decodes as a
command to set the repetition period, which requires no change in the control state. A
repetition period latch command is issued since the repetition period register does not match
the command bus value,. Once the value is locked into the register, the falling repetition
period difference flag clears the latch signal. The fourth byte is the “all call” address. The
previous set of register commands is now complete and the confroller shifts to state O to
process the next command set because an address command was received in control state 3.
The next clock cycle shifts the controller to state 1 since the “all call” is a valid address and
the controller is now in state 0. The controller shift to state 0 just before 2 uS in Figure 127
is caused by a system reset signal, which also disables the output flag and clears the storage

registers.

182

* CmdSeqgCont.cir ==> Command Sequence Controller Transient Characteristics

-* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

vi0 i0 0 PWL(0 0 1450n 0 1451n 5 1 5)

vil il O PWL(O0 0 1450n 0 1451n 5 1 5)

vi2z i2 0 PWL(0 5 1 5)

vi3 i3 0 PWL(0 5 1 5)

vid i4 0 PWL(O0 O 1450n 0 1451n 5 1 5)

vi5 15 0 PWL(0 O 1450n 0 1451n 5 1 5)

vié i6 O PWL(0 5 450n 5 451n 0 950n 0 951n 5 1 5)
vi7 i7 O PWL(0 O 450n 0 45in 5 1450n 5 1451n 0 1 0)
VnVA nVA O PWL(O O 450n 0 451n 5 1450n 5 145in 0 1 0)

VbV bV 0 PWL(0 5 400n 5 401n 0 500n'0 501n 5 900n 5 901ln 0 1000n 0 1001n 5
1400n 5 1401n 0 1500n 0 1501n 5 1900n 5 1901n 0 1 0)

VpwD pwD 0 PWL(0 5 600n 5 601ln 0 951n 0 852n 5 1 5)

VrpD rpD 0 PWL(0 5 1100n 5 1101n 0 1451n 0 1452n 5 1 5)

Vrst nRst 0 PWL(0 5 1975n 5 1976n 0 1979n 0 1980n 5)

Velk clk 0 PULSE(0 5 24.5n 1n 1n 24n 50n)

* Command sequence controller
Xd0 ao2 clk nRst g0 ng0 1 0 DFLOPGC
Xdl io0 clk nRst gl ngl 1 0 DFLOPGC
Xa0 i7 g0 ao0 1 O NAND2

Xal ngl g0 aol 1 0 NAND2

Xa2 ao0 aol oo0 ao2 1 0 NAND3
Xi0 ao0 io0 1 0 INV

Xo0 17 g0 nVA o000 1 0 OR3

Xa3 i7 bV g0 gl ao3 1 0 AND4
Xil i6 ni6 1 0 INV

Xa4 i7 bV nié aod 1 0O AND3

Xa5 aod4 ool oo2 ao5 1 0 NAND3
Xa6 nRst ao5 ao6 1 0 NAND2

Xol i3 i4 i5 ool 1 O NOR3

Xo02 10 il i2 oo2 1 0 NOR3

Xa7 nié pwD ao3 ao7 1 0 NAND3
Xa8 ao3 i6 rpD ao8 1 0 NAND3
Xa9 ao3 pwD rpD ao9 1 0 NAND3
Xal0 ao7 ao8 ao% aoll0 1 0 NAND3
Xo3 aob aoll oo3 1 0 OR2

Xo4 003 005 enOut 1 0 NOR2

Xo5 ao3 enOut oo5 1 0 NOR2

Xi2 ao7 pwlLat 1 0 INV

Xi3 ao8 rpLat 1 0 INV

* Simulation Parameters
.TRAN .1in 2000n 0 1n

.END

Figure 126. Command Sequence Controller SPICE model source code.

183

Command Sequence Controller Response

T

T

T

T

pratc]h

voltage [V]

rpLath|1

0 l

enOutgut

o !

1

0 0.2

04

0.8

1
time [uS]

1.2

1.4

1.6

1.8

Figure 127. Command Sequence Controller SPICE model response.

184

2. Address Comparator

The SPICE model for the address comparator implements the structural design of
Figure 103. A full source code listing is provided in Figure 128. The reference address is
setto“1 001 100" and various values are presented on the command bus. The address
" comparator response in Figure 129 illustrates the continuous‘ address verification. The first
and last valid address indications correspond to the all-call address and the middle two valid

address indications are due to the assigned tactor address.

185

Vio
vil
vi2

Vi3
vid
vis
Vié

vi7

vao0
Val
vaz2
va3
va4
vab
vab

Xx0
Xx1
Xx2
Xx3
Xx4
Xx5
Xx6
Xal
Xal
Xa2
Xa3
Xad
Xa5
Xo0
Xol
Xo2

i0
il
i2

i3
i4
i5
i6

i7

ad0
adl
ad2
ad3
ad4
ads
adé

io
il
i2
i3
i4
i5
i6

[eNeoleNolNoNolNo

* Address

ado
adl
ad2
ad3
ad4
ad5
adé

* Power Supplies
VDS 1 0 5

* Input Signals

* AddrComp.cir ==>

Address Comparator Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

PWL(0 5 299.5n 5 300.5n
PWL(0 5 299.5n 5 300.5n
PWL(0O 5 299.5n 5 300.5n
1 0)
PWL(0 5 299.5n 5 300.5n
PWL(0 5 299.5n 5 300.5n
PWL(0 5 299.5n 5 300.5n
PWL(0 5 299.5n 5 300.5n
1599.5n 0 1600.5n 5
PWL(0 5 199.5n 5 200.5n
10)
0
0
5
5
0
0
5
comparator
x00 1 0 XNOR2
xol 1 0 XNOR2
x02 1 0 XNOR2
x03 1 0 XNOR2
x04 1 0 XNOR2
x05 1 0 XNOR2
xo06 1 0 XNOR2

x00 xo0l x02 ao0 1 0 NAND3
x03 x04 xo05 aol 1 0 NAND3
x06 ni7 ao2 1 0 NAND2
i6 ni7 ao3 1 0 NAND2

i3 i4 i5 ao4 1 0 NAND3
i0 i1 i2 ao5 1 0 NAND3
ao0 aol ao2 o000 1 0 NOR3
ao3 ao4 ao5 ool 1 0 NOR3

000 ool nValidaddr 1 0 NOR2

.END

Xi i7 ni7 1 0 INV

* Simulation Parameters
.TRAN .1ln 2000n 0 1n

ORrPrOO0OOO

1299.5n 0 1300.5n 5 1 5)
1399.5n 0 1400.5n 5 1 5)
699.5n 0 700.5n 5 1699.5n 5 1700.5n 0

599.5n 0 600.5n 5 1 5)

1399.5n 0 1400.5n 5 1 5)

1199.5n 0 1200.5n 5 1 5)

499.5n 0 500.5n 5 1099.5n 5 1100.5n 0
5)

899.5n 0 900.5n 5 999.5n 5 1000.5n O

Figure 128. Address Comparator SPICE model source code.

186

Figure 129. Address Comparator SPICE model response.

Address Comparitor Response
5 nValidAddr : : , ;] i
0 | | I] |]
iz
5 T T T T T T T
o 1 1 I T 1 I I
i6
5 T T Il | T T T T
0 Il I | | | T T [
i5
5 I 1 T i [})i I T
0 ! T T T T | 1 H
— i4
> 5 I T T T T [} 1 T
[}
)
2
g 0 ! I I I I T ! !
i3
5 I T I T T I T I
0] T | I} ! 1 1 {
i2
’ 5 T T T I T T I T T
! 0 1 I T | 1 | | I} T
il
5 1 T [} T i T I 13
0 t T T T I T | I
5 '_i‘o 1 T T T T T I T I
0 | T T T T T ! | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time [uS]

187

3. Pulse Width Register

The SPICE model for the pulse width register implements the structural design of
Figure 104. A full source code listing is provided in Figure' 130. Various values are
presented to the register and a clock pulse provides the latch command. The pulse width
register response ih Figure 131 shows the various values are stored in the register as

required. The periodic clearing of all bits is caused by a reset signal that is pulsed at every

other latch cycle.

188

* PWregister.cir ==> Pulse Width Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

vi0 i0 O PWL(0 5 299.5n 5 301.5n 0 499.5n 0 501.5n 5 1 5)
Vil il O PWL(0 5 399.5n 5 401.5n 0 699.5n 0 701.5n 5 1 5)
vi2 i2 0 PWL(0 5 499.5n 5 501.5n 0 899.5n 0 901.5n 5 1 5)
Vi3 i3 0 PWL(0 5 599.5n 5 601.5n 0 1099.5n 0 1101.5n 5 1 5)
Vid i4 0 PWL(0 5 699.5n 5 701.5n 0 1299.5n 0 1301.5n 5 1 5)
Vvi5 i5 0 PWL(0 5 799.5n 5 801.5n 0 1499.5n 0 1501.5n 5 1 5)
Vvié i6 O PWL(0 5 899.5n 5 901.5n 0 16%9.5n 0 1701.5n 5 1 5)
vi7 i7 0 PWL(0 5 999.5n 5 1001.5n 0 1899.5n 0 1901.5n 5 1 5)

Vrst rst 0 PULSE(5 0 2.5n 1n 1In 95n 100n)
Velk latch 0 PULSE(0 5 24.5n 1n 1n 24n 50n)

* pulse width register

Xd0 i0 latch nR pw0O npw0 1 0 DFLOPGC
Xdl il latch nR pwl npwl 1 0 DFLOPGC
Xd2 i2 latch nR pw2 npw2 1 0 DFLOPGC
X33 i3 latch nR pw3 npw3 1 0 DFLOPGC
Xd4 i4 latch nR pw4d npwd 1 0 DFLOPGC
Xd5 i5 latch nR pw5 npw5 1 0 DFLOPGC
Xx0 i0 pw0 xo0 1 O XOR2 :
Xx1 il pwl xol 1 0 XOR2

Xx2 i2 pw2 x02 1 0 XOR2

Xx3 i3 pw3 x03 1 0 XOR2

Xx4 i4 pwéd xod4 1 0 XOR2

Xx5 15 pw5 x05 1 0 XOR2

Xo0 xo00 xol x02 ool 1 0 NOR3
Xol xo03 xo04 x05 ool 1 0 NOR3
Xa0 o000 ool pwDiff 1 0 NAND2
Xi rst nR 1 0 INV

* Simulation Parameters
.TRAN .1ln 2000n 0 1n

.END

Figure 130. Pulse Width Register SPICE model source code.

189

Pulse Width Register Response

_ Jach
Ot
ST TAR T A n T
A
ST -f*rr M]]
O_H UoU | quJ_flef
s | minl ninin]
NI
g*y 0 M NNl]
ol ff Jr _ ! J—J U F |
S A e — S TEMETE T
ol U [U | _ JAJ i Ji In
S%Thff A f ——
v JUluiyd
T T

time [uS]

Figure 131. Pulse Width Register SPICE model response.

190

4. Repetition Period Register

The SPICE model for the repetition period register implements the structural design
of Figure 105. A full source code listiﬁg is provided in Figure 132. Various values are
presented to the register and a clock pulse provides the latch command. The repetition
period register response in Figure 133 shows that the various values are stored in the register
as required. The periodic clearing of all bits is caused by a reset signal that is pulsed at |

every other latch cycle.

191

Vio
vil
vi2
Vi3
vi4
Vi5
Vié
vi7

Xdao
xXdi
Xd2
Xd3
Xd4
xXds
Xx0
Xx1
Xx2
Xx3
Xx4
Xx5
Xo0
Xol
Xa0

io0
il
i2
i3
i4
i5
io0
il
i2
i3
i4
i5

* Power Supplies
vDS 1 0 5

* Input Signals
i0 0 PWL(O
il 0 PWL(O
i2 0 PWL(O
i3 0 PWL(O
i4 0 PWL(O
i5 0 PWL(O
i6 0 PWL(O
i7 0 PWL(O

Vrst rst 0O PULSE
Velk latch 0 PULSE(O 5

* Repetition per

latch nR
latch nR
latch nR
latch nR
latch nR
latch nR

rp0
rpl
rp2
rp3
rp4

.xp5

x00
xol
x02
x03
xo04
x05

RPREPRR

ooty uvg

(5

iod
rp0
rpl
rp2
rp3
rp4
rp5

0

0
0
0
0

0

299.
399.
499.
599.
699.
799.
.5n
999.
0 2.

899

5n
5n
5n
5n
5n
5n

5n
5n

24.

Uty vt U,

in
5n

register
nrpl
nrpl
nrp2
nrp3
nrp4
nrpb5

XOR2
XOR2
XOR2
XOR2
XOR2
XOR2

I W T)
coococoo

x00 %0l x02 o000 1 0 NOR3
x03 x04 x05 ool 1 0 NOR3
000 ool rpDiff 1 0 NAND2

.END

Xi rst nR 1 0 INV

* Simulation Parameters
.TRAN .1ln 2000n 0 1n

* RPregister.cir ==> Repetition Period Register Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

301.5n 0 499.5n 0 501.5n 5 1 5)
401.5n 0 699.5n 0 701.5n 5 1 5)
501.5n 0 899.5n 0 901.5n 5 1 5)
601.5n 0 1099.5n 0 1101.5n 5 1 5)
701.5n 0 1299.5n 0 1301.5n 5 1 5)
801.5n 0 1499.5n 0 1501.5n 5 1 5)
901.5n 0 1699.5n 0 1701.5n 5 1 5)

1001.5n 0 1899.5n 0 1901.5n 5 1 5)
1n 95n 100n)
in 1n 24n 50n)

DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC
DFLOPGC

Figure 132. Repetition Period Register SPICE model source code.

192

Repetition Period Register Response

Ay
5_rpD_iff =] S0l 0o onnonin IF A H 0
P 1 O O
T T FF*
o[i : i i | Jodouogou U i
=ol U U L ___,jb Uodouou 4 | U U
§_m I
g BNIDIRl f F]
L L U L .J

.

—

]

i]

[T I

ol U U S NN

ol U u g I

rp5 1

5/ T]) ' '

INNEin

0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
time [uS]

Figure 133. Repetition Period Register SPICE model response.

193

D. TACTOR POWER CONTROLLER

The SPICE model for the Tactor Power Controller is a combination of the models
for its subordinate components. A full source code listing is provided in Figure 134. The
input signals simulatev receiving a register command setting the pulse Width to2at0.5uS, a
register command setting the repetition period to 1 at 1 pS, and finally a system reset just
before 2 uS. The Tactor Power Controller response is shown in Figure 135 with an
emphasis on the output signals and the pulse width and repetition period down counter

operations. For the first 0.5 pS, the counters are continuously cleared since the output is

disabled. From 0.5 to 1 pS, the counters are continuously loading the values in their
respective storage registers. This condition is driven by the 0 value stored in the repetition
period register and effectively causes the tactor to be continuously activated since the pulse
width is now non-zero. At 1 uS, when the output is momentarily disabled, the pulse width
counter is cleared and the output oscillation signals stop. When the new repetition period is
set, the output is again enabled. The pulse width and repetition register values are
immediately 1atch¢d into the down counters and, since pulse width is non-zero, tactor
activation begins. The down counters count down together and tactor activation stops when
the pulse width count reaches zero. The pulse width down counter stops at zero while the
repetition period down counter continues counting. When the repetition period count
reaches one, the wave shape is complete and the counters are reloaded on the next clock
cycle. This process continues, creating a 50% activation cycle for the simulated commands.

Just before 2 S, a system reset signal is simulated and tactor activation is immediately

halted.

194

Veclk
Vosc
VpwS
Vw4
Vpw3
Vpw2
Vpwl
Vpw0
Vrp5
Vrp4
Vrp3
Vrp2
Vrpl
Vrp0

Xpal
Xpo0
Xpol
Xpm0
Xpdo
Xpx1l
Xpml
Xpdl
Xpal
Xpx2
Xpm2
Xpd2
Xpo2
Xpx3
Xpm3
Xpd3
Xpa?2
Xpx4
Xpm4
Xpdd
Xpo3
Xpx5
Xpm5
Xpd5
Xpod
Xpo5

* Power Supplies
VDS 1 0 5

* Input Signals
VenOut enOut 0 PWL(

* TactorPwrCont.cir ==>

* Logic Gate model definitions
.INCLUDE subckt.cir

0 0 505n 0 506n 5 1005n 5 1006n 0 1009n 0 1010n 5

1980n 5 1981n 0 1 0)

clk 0 PULSE(0 5 24.5n 1n 1n 49n 100n)
osc 0 PULSE(0 5 24.5n 1n 1n 24n 50n)

pwS
pwi
pw3
pw2
pwl
pwO
rp5
rp4d
rp3
rp2
rpl
rp0

PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (0
PWL (O

QOO OO0 OO0 OO0COOOO0O

0
0
0
0
0
0
0
0
0
0
0
0

1 0)

1 0)

10)

10)

500n 0 501n 5 1980n 5 198in 0 1 0)
0) '

1 0)

1 0)

10)

1

1

1

—

0)
0)
000n 0 1001n 5 1980n 5 1981n 0 1 0)

* Power control logic
Xi0 enOut cntClr 1 0 INV

* Pulse Width Down Counter

opo0 opol npwZ 1 0 NAND2

pg3 pgd pg5 opo0 1 0 NOR3

pg0 pgl pg2 opol 1 0 NOR3

pw0 nrpGT1 mpoO 1 0 MUX

clk opoS pgl0 npg0 1 0 DFLOPGC
npgl xpol 1 0 XNOR2

pwl nrpGT1 mpol 1 0 MUX

clk opo5 pgl npgl 1 0 DFLOPGC
npgl apol 1 0 NAND2

pg2 xpo2 1 0 XNOR2

pw2 nrpGT1 mpo2 1 0 MUX

clk opo5 pg2 npg2 1 0 DFLOPGC
pg2 opo2 1 0 NOR2

npg3 xpo3 1 0 XNOR2

pw3 nrpGT1 mpo3 1 0 MUX

clk opo5 pg3 npg3 1 0 DFLOPGC
npg3 apo2 1 0 NAND2

pgéd xpod 1 0 XNOR2

pwéd nrpGT1 mpod 1 0 MUX

clk opo5 pg4 npg4 1 0 DFLOPGC
pg4 opo3 1 0 NOR2

npg5 xpo5 1 0 XNOR2

pw5 nrpGT1 mpo5 1 0 MUX

clk opoS5 pgS npg5 1 0 DFLOPGC
nrpGT1l npwZ opo4 1 0 NOR2

opo4 cntClr opo5 1 0 NOR2

npg0
mpo0
npg0
xpol
mpol
npg0
apol
Xpo2
mpo2
apol
opo2
xpo3
mpo3
opo2
apo2
xpod
mpo4d
apo2
opo3
Xpo5
mpo5

Figure 134. Tactor Power Controller SPICE model source code.

195

Tactor Power Controller Transient Characteristics

* Repetition Period Down Counter

Xra0 oro0 orol oro2 nrpGT1l 1. 0 AND3
Xro0 rgl rg2 oro0 1 0 NOR2

Xrol rg3 rg4 orol 1 0 NOR2

Xro2 rg5 rgé rq7 oro2 1 0 NOR3

Xrm0 nrg0 0 nrpGTl mro0 1 0 MUX

Xrd0 mro0 clk oro7 rg0 nrg0 1 0 DFLOPGC
Xrxl nrg0 nrgl xrol 1 0 XNOR2

Xrml xrol 0 nrpGTl mrol 1 0 MUX

Xrdl mrol clk oro7 rqgl nrgl 1 O DFLOPGC
Xra2 nrg0 nrqgl aro2 1 0 NAND2

Xrx2 aro2 rq2 xro2 1 0 XNOR2

Xrm2 xro2 rp0 nrpGTl mro2 1 0 MUX

Xrd2 mro2 clk oro7 rg2 nrg2 1 0 DFLOPGC
Xro3 aro2 rg2 oro3 1 0 NOR2

Xrx3 oro3 nrg3 xro3 1 0 XNOR2

Xrm3 xro3 rpl nrpGT1l mro3 1 0 MUX

Xrd3 mro3 clk oro7 rg3 nrg3 1 0 DFLOPGC
Xra3 oro3 nrg3 aro3 1 0 NAND2

Xrx4 aro3 rgd xro4 1 0 XNOR2

Xrmd xro4 rp2 nrpGTl mro4 1 0 MUX

Xrdd mro4 clk oro7 rg4 nrg4 1 0 DFLOPGC
Xrod aro3 rqgé4 orod 1 0 NOR2

Xrx5 oro4 nrg5 xro5 1 0 XNOR2

Xrm5 xro5 rp3 nrpGT1 mro5 1 0 MUX

Xrd5 mro5 clk oro7 rg5 nrg5 1 0 DFLOPGC
Xrad oro4 nrqgS aro4 1 0 NAND2

Xrx6 aro4 rgb6 xro6 1 0 XNOR2

Xrmé6 xro6 rp4 nrpGTl mro6 1 0 MUX

Xrdé mro6 clk oro7 rg6é nrg6 1 0 DFLOPGC
XroS5 aro4 rgé oro5 1 0 NOR2

Xrx7 oroS5 nrg7 xro7 1 0 XNOR2

Xrm7 xro7 rp5 nrpGT1l mro7 1 0 MUX

Xrd7 mro7 clk oro7 rg7 nrg7 1 0 DFLOPGC
Xral nrpGT1 nrg0 arol 1 0 NAND2

Xro6 nrpGTl arol oro6 1 0 NOR2

Xro7 oro6 cntClr oro7 1 0 NOR2

* Power oscillator

Xoal osc npwZ aoo0 1 0 NAND2
Xoal nosc npwZ aool 1 0 NAND2
X0i0 osc nosc 1 0 INV

Xoil aoo0 pla 1 0 INVX
Xo0i2 aool0 plb 1 0 INVX
Xoi3 aool p2a 1 0 INVX
Xoid4 aool p2b 1 0 INVx

* Simulation Parameters
.TRAN .1n 2000n 0 1n

.END

Figure 134. Tactor Power Controller SPICE model source code. (continued)

196

Tactor Power Controller Response
enOut;l)ut

T T T T T T

0 T - I l H)] !]
npwZero
T

T T = I -

T | | L I

nrpGT1 .

.
5 =

0 ! ! | ! ! T

pwria 8In pwrlb

T

101

pwr2a 8'1 pwr2b [

pwqgl

voltage [V]

pwq0

rpq2

rpgql

rpq0

]

o T T T T T 1 1 !

0 . 0.2 0.4 0.6 0.8 1 1.2 14 1.6
time [uS]

Figure 135. Tactor Power Controller SPICE model response.

197

1. Power Control Logic

The SPICE model for the power control logic structural design of Figure 106 was
not individually tested since it is comprised of a single logic element. The power control

logic component was tested as an integral portion of the Tactor Power Control module

2. Power Oscillator

The SPICE model for the power oscillator implements the structural design of
Figure 107. A full source code listing is provided in Figure 136. An oscillation frequency is
supplied to the power oscillator and the enable power signal is used to control transmission
of the oscillation signal. The power oscillator response in Figure 137 shows that oscillation
begins as soon as the enable power signal is applied and oscillation ends immediately when

the enable power signal is removed.

* pwrOscill.cir ==> Power Oscillator Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

VenP enP 0 PWL(0 5 499n 5 500n 0 699n 0 700n 5 1499n 5 1500n 0 1699n 0
1700n 5 1 5)

Vosc osc 0 PULSE(0 5 24.5n 1n In 24n 50n)

* pPower oscillator

Xa0 osc enP ao0 1 0 NAND2
Xal nosc enP aol 1 0 NAND2
Xi0 osc nosc 1 0 INV

Xil ao0 pla 1 0 INVx

Xi2 ao0 plb 1 0 INVx

Xi3 aol p2a 1 0 INVx

Xid4 aol p2b 1 0 INVx

* Simulation Parameters
.TRAN .1n 2000n 0 1n

.END

Figure 136. Power Oscillator SPICE model source code.

198

TG

>>>>>>>>>

3. Pulse Width Down Counter

The SPICE model for the pulse width down counter implements the structural
design of Figure 108. A full source code listing is provided in Figure 138. Various values
are loaded into the down counter to test the transitions between different stages. The pulse
width down counter response in Figure 139 shows the values are loaded into the counter on
the positive clock transition when the load signal is applied. The down counter decreases

the stored value by one at each clock cycle. As seen just after the 1.2 uS point, when the
counter reaches zero, it stops counting. The count clear signal at 1.7 uS immediately clears

all counter stages. The control signal produced by this down counter is the "not pulse width
equals zero." Figure 139 shows this flag is immediately applied whenever the count is non-

zero and immediately cleared when the counter reaches zero.

200

Xal
Xo0
Xol
Xm0
Xdo
Xx1
Xml
Xdl
Xal
Xx2
Xm2
xd2
Xo2
Xx3
Xm3
Xd3
Xa2
Xx4
Xm4d
Xd4
Xo3
Xx5
Xm5
Xdas
Xo4d
Xo5

* PWDownCount.cir ==>

oo0

* Power Supplies
VDS 1 0 5

* Input Signals

Pulse Width Down Counter Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

1350n 5 1 5)

5
0
PWL(0 O 950m O 951n 5 1250n 5 1251n O 1349n 0 1350n 5 1 5)
0 650n 0 651n 5 950n 5 951n 0 1349n 0 1350n 5 1 5)

0 350n 0 351n 5 650n 5 651n 0 1349n 0 1350n 5 1 5)

5 350n 5 351n 0 1349n 0 1350n 5 1 5)

PWL(0O O 49n 0 50n 5 99n 5 100n 0 349n 0 350n 5 399n 5 400n 0

5 699n 5 700n 0 949n 0 950n 5 999n 5 1000n 0

1349n 0 1350n 5 1399n 5 1400n 0 1 0)

vi0o i0 O PWL(O 1 5)
vil il 0 PWL(O 1349n 0
viz i2 O
Vi3 i3 0 PWL(O
Vvid i4 0 PWL(O
vi5 i5 0 PWL(O
Vlod lod 0

649n 0 650n
Vclr clr 0 PWL(0O 5 5n 5 6n

Vclk clk 0 PULSE(O 5 24.5n

* Pulse Width Down Counter

ool npwZ 1 0 NAND2

g3 g4 g5 oo0 1 0 NOR3
g0 gl g2 ool 1 0 NOR3

ng0
mo0
ng0
x0l
mol
ng0
aol
x02
mo2
aol
002
x03
mo3
002
ao2
x04
moé
ao2
003
x05
mo5
lod
oo4

.END

i0 lod mo0 1 0 MUX
clk 005 g0 ng0 1 O
ngl xol 1 0 XNOR2
il lod mol 1 0 MUX
clk o005 gl ngl 1 0
ngl aol 1 0 NAND2
g2 x02 1 0 XNOR2
i2 lod mo2 1 0 MUX
clk 005 g2 ng2 1 O
g2 o002 1 0 NOR2
ng3 x03 1 0 XNOR2
i3 lod mo3 1 0 MUX
clk o005 @3 ng3 1 0
ng3 ao2 1 0 NAND2
g4 xo0d4 1 0 XNOR2
i4 lod mo4 1 0 MUX
clk oo5 g4 ng4d 1 0
g4 oo3 1 0 NOR2
ng5 xo5 1 0 XNOR2
i5 lod mo5 1 0 MUX
clk 005 g5 ng5 1 0
npwZ o004 1 0 NOR2
clr oo5 1 0 NOR2

* Simulation Parameters
.TRAN .1n 2000n O 1n

0 1709n 0 1710n 5 1719n 5 1720n 0 1 0)
1n 1n 24n 50n)

DFLOPGC

DFLOPGC

DFLOPGC

DFLOPGC

DFLOPGC

DFLOPGC

Figure 138. Pulse Width Down Counter SPICE model source code.

201

Pulse Width Down Counter Response

AR

voltage [V]
=]
=Y

|

0 0.2 0.4 0.6 0.8 1 1.2 14
time [uS]

5 "__l)_‘_x__ T T T T N S S—
0— |] 1 T 1 i | ! T
q3
5 pa T I T T T S S S T
0 | T | T I | ! b —————
q2] T 1 1} O R T
5 r [7 §
0 ¥ | | | 1 T | T
ql
5 s T T i v T po T [L rt T
0 1 - T — 1 [1 ! i
q0 .
0 I | J 1 1 ! ~ 1

Figure 139. Pulse Width Down Counter SPICE model response.

202

4. Repetition Period Down Counter

The SPICE model for the repetition period down counter implements the structural
design of Figure 109. A full source code listing is provided in Figure 140. Various values
are loaded into the down counter to test the transitions between different stages. The
repetition period down counter response in Figure 141 shows the values are loaded into the
counter on the positive clock transition when the load signal is applied. The down counter

decreases the stored value by one at each clock cycle. As seen just after the 1.6 uS point,

when the counter reaches zero, it stops counting. The count clear signal at 1.2 pS
immediately clears all counter stages. The control signal produced by this down counter is
the "not repetition period greater than one." Figure 141 shows this flag is immediately
applied whenever the count is one or zero and immediately cleared when the counter value

is greater than one.

* RPDownCount.cir ==> Repetition Period Down Counter Transient
Characteristics .

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

vi0 i0 0 PWL(0 5 1 5)

vil i1 O PWL(0 0 1 0)

vi2 i2 0 PWL(0 0 950n 0 951In 5 1250n 5 1251n 0 1 0)

vi3 i3 0 PWL(0 O 650n 0 65In 5 950n 5 951n 0 1 0)

vi4 i4 O PWL(O O 350n 0 351n 5 650n 5 651n 0 1 0)

vis i5 0 PWL(0 5 350n 5 351n 0 1 0)

Vliod 1lod 0 PWL(0 O 49n 0 50n 5 99n 5 100n 0 349n 0 350n 5 399n 5 400n O

649n 0 650n 5 699n 5 700n 0 949n 0 950n 5 999n 5 1000n 0O
1349n 0 1350n 5 1399n 5 1400n 0 1 0)

Velr 'elr 0 PWL(0 S 5n 5 6n 0 1179n 0 1180n 5 1189n 5 1190n 0 1 0)

Veclk clk 0 PULSE(O 5 24.5n 1n 1n 24n 50n)

Figure 140. Repetition Period Down Counter SPICE model source code. -

'

203

* Repetition Period Down Counter
Xa0 o000 ool 002 nrpGT1 1 0O AND3
Xo0 gl g2 oo0 1 0 NOR2

Xol g3 g4 ool 1 0 NOR2

X02 g5 g6 g7 oo2 1 0 NOR3

Xm0 ng0 0 lod moO 1 0 MUX

Xd0 mo0 clk o007 g0 ng0 1 O DFLOPGC
Xx1 ng0 ngl xo0l 1 0 XNOR2

Xml xo0l 0 lod mol 1 0 MUX

Xdl mol clk 007 gl ngl 1 0 DFLOPGC
Xa2 ng0 ngl ao2 1 0 NAND2

Xx2 ao2 g2 x02 1 0 XNOR2

Xm2 x02 10 lod mo2 1 0 MUX

Xd2 mo2 c¢lk 007 g2 ng2 1 0 DFLOPGC
Xo3 ao02 g2 o003 1 0 NOR2

Xx3 003 ng3 x03 1 0 XNOR2

Xm3 %03 il lod mo3 1 0 MUX

Xd3 mo3 clk o007 g3 ng3 1 0 DFLOPGC
Xa3 003 ng3 ao3 1 0 NAND2

Xx4 ao3 g4 xo04 1 0 XNOR2

Xm4 xo4 i2 lod mo4 1 0 MUX

Xd4 mod4 clk oo7 g4 ng4 1 0 DFLOPGC
Xo4 ao3 g4 oo4d 1 0 NOR2

Xx5 o004 ng5 xo5 1 0 XNOR2

Xm5 xo05 i3 lod mo5 1 0 MUX

Xd5 mo5 clk o007 g5 ng5 1 0 DFLOPGC
Xad4d oo4 ng5 ao4 1 0 NAND2

Xx6 aod g6 xo06 1 0 XNOR2

Xmé6 x06 i4 lod mo6 1 0 MUX

Xd6 mo6 clk oo7 gbé ngé 1 0 DFLOPGC
Xo5 aod g6 oo5 1 0 NOR2

Xx7 o005 ng7 xo7 1 0 XNOR2

Xm7 %07 i5 lod mo7 1 0 MUX

Xd7 mo7 clk oo7 g7 ng7 1 0 DFLOPGC
Xal nrpGTl1 ng0 aol 1 0 NAND2

Xo6 lod aol co6 1 0 NOR2

Xo7 o006 clr oo7 1 0 NOR2

* Simulation Parameters
.TRAN .1n 2000n 0 1n

.END

Figure 140. Repetition Period Down Counter SPICE model source code. (continued)

204

voltage [V]

clk

Repetition Period Down Counter Response

A AT

T —] T T

p— T r—

0 ;
nrpGT1
5 — T

q7

q6

q5

q4

._. _.

0—
q3
5

q2

0
ql
5

—1
I = =
—

|

0
q0
5

. L
UL T

04 0.6 0.8 1 1.2 1.4 1.6 1.8
time [uS]

Figure 141. Repetition Period Down Counter SPICE model response.

205

5. Clock Divider

The SPICE model for the clock divider implements the structural design of Figure
110. A full source code listing is provided in Figure 142. The system clock drives a
counter, causing the system clock to be divided by two at each counter stage. Clock divider
testing was limited By the memory of the simulation computers. In order to test all fourteen
stages of the clock divider, three different tests were required. Seven stages were tested at a
time and a two-stage overlap was used to ensure that all broken connections were remade.
The clock di\vider response in Figure 143 shows the results of the final component test. As

required, each stage reduces the reference frequency by a factor of two.

206

* (ClockDiv.cir ==> Clock Divider Transient Characteristics

* Logic Gate model definitions
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals
Vnrst nRst 0 PWL(0 0 12n 0 13n 5 1849n 5 1850n 0 1899n 0 1900n 5 1 5)
veclk clk 0 PULSE(O 5 24.5n 1n 1n 24n 50n) ‘

* Clock Divider

Xd0 ng0 clk nRst g0 ng0 1 0 DFLOPGC

Xx1 g0 gl xol 1 0 XOR2

Xdl xol clk nRst gl ngl 1 0 DFLOPGC

Xa0 g0 gl ao0 1 0 NAND2

Xx2 ao0 ng2 xo02 1 0 XOR2

Xd2 xo2 c¢lk nRst g2 ng2 1 0 DFLOPGC

Xo0 ao0 ng2 oo0 1 0 NOR2

Xx3 000 g3 x03 1 0 XOR2

Xd3 xo3 clk nRst g3 ng3 1 0 DFLOPGC

Xal oo0 g3 aol 1 0 NAND2

Xx4 aol ng4 xo04 1 0 XOR2

Xd4 xo4 clk nRst g4 ng4 1 0 DFLOPGC

Xol aol ng4 ool 1 0 NOR2

Xx5 ool g5 xo05 1 0 XOR2

Xd5 xo5 ¢lk nRst g5 ng5 1 0 DFLOPGC

Xa2 ool g5 ao2 1 0 NAND2

Xx6 ao2 ng6 xo06 1 0 XOR2

Xd6 xo6 clk nRst g6 ng6 1 0 DFLOPGC

Xo02 ao2 ngé 002 1 0 NOR2

Xx7 o002 g7 x07 1 0 XOR2

Xd7 xo07 clk nRst g7 ng7 1 0 DFLOPGC

Xa3 002 g5 ao3 1 0 NAND2

Xx8 ao3 ng8 x08 1 0 XOR2

Xd8 xo8 clk nRst g8 ng8 1 0 DFLOPGC

Xo3 ao3 ngbé o003 1 0 NOR2

Xx9 003 g9 x09 1 0 XOR2)

Xd9 x09 clk nRst @9 ng9 1 0 DFLOPGC

Xa4 o003 g5 aod 1 0 NAND2

Xx10 ao4 ngl0 x0l0 1 0 XOR2

Xd10 x0l10 clk nRst gl0 ngl0 1 0 DFLOPGC
Xo4 ao4 ng6 oco4 1 0 NOR2

Xx11l o004 ¢ll xoll 1 0 XOR2

Xdll xo0l1l1l clk nRst gll ngll 1 0 DFLOPGC
Xa5 oo4 g5 ao5 1 0 NAND2

Xx12 ao5 ngl2 xo0l2 1 0 XOR2

Xd12 x0l12 clk nRst gl2 ngl2 1 0 DFLOPGC
Xo5 ao5 ng6 oo5 1 0 NOR2

Xx13 o005 gl3 xo0l3 1 0 XOR2

Xdi3 xol3 clk nRst gl3 ngl3 1 0 DFLOPGC

* Simulation Parameters
.TRAN .1n 2000n O 1n

.END

Figure 142. Clock Divider SPICE model source code.

207

Clock Divider Response
clk

q6

q4

voltage [V]

q3

(O
T
AR

Figure 143. Clock Divider SPICE model response.

208

APPENDIX D. TACTILE INTERFACE ANIMATION PROGRAM

The goal of animating TIC operations was to accurately and clearly portray the
functional relations between the wave controlling components. An animation was
developed that illustrates the changes that occur in the TIC registers and counters in
response to a series of command bytes.

A. ANIMATION DESIGN

1. TIC Visual Representation

The significant TIC changes caused by received commands include the controller
state, both wave shape registers, and both down counters. It was essential to depict tactor
activation as a visual vibration of the tactor because this system uses vibration as the
physical stimulus. Figure 144 shows the graphical representation of two intelligent tactors
in a tactile array. The dark gray rectangles represent the tactors. Each is labeled with its
address value. Two labeled columns are provided for each tactor to depict the parameters
associated with pulse width and repetition period. The number at the bottom of each
column is the stored register value for the pulse width or repetition period. The column acts
as a vertical gage representing the value in the down counter associated with each register.
The hon'zontai bar across the bottom indicates the simulation time and proceeds steadily
from left to right. The rectangular bubbles above the time line are commands that will be

issued when the time reaches their position.

209

Figure 144. Tactile Interface Animation Elements.

2. Animation Color Scheme

A color scheme was conceived to convey additional information regarding TIC
conditions. The tactor rectangles change in color to represent the state of the command
sequence controller. The color used for to fill the pulse width gage is green, exhibiting a
"go" condition for tactor activation any time the count is greater than zero.

Figure 145 shows the animation in progress. When a valid address is received the
TIC shifts to state "B" and the tactor color changes to yellow. When a register command is
received by a tactor in state "B," the register is set to the commanded value, the TIC shifts to
state "C.," and the tactor color changes to red. When any address is received by a tactor in
state "C," the TIC shifts to state "A" and the tactor color changes back to gray. The
repetition period down counter value is represented by a blue column in the area below the

"RP" label. During operation, the pulse width gage falls four times as fast as the repetition

210

period gage. When the pulse width column is not zero, the attached tactor vibrates. When
the pulse width column réaches zero, vibration stops. When the repetition period is less than
two, both down counters load the stored register value. Consequently, when a zero
repetition period is assigned, both columns reload on every clock pulse and neither column
decreases in value. When the repetition period register is greater than zero, both counters

decrease until they are reloaded at the repetition period down counter value of one.

Figure 145. Tactile Interface Animation in Progress.
B. ANIMATION PROGRAMMING

Initially, C++ was used to develop the TIC animation. This choice was a mistake
due to the complexity of C++ programming with respect to event timing and graphics
display. Programming efforts were shifted to making a JAVA applet that would run in a

web browser because this application is very limited in scope. With a score of

demonstration applets and extensive documentation, the JAVA implementation was much

211

easier that the C++ effort. The program was divided into three logical objects: the
intelligent tactors, the command bytes, and the demonstration events. Each of these
elements was implemented as an object class and they are discussed in the following
subsections.

1. Intelligent Tactor

The "Tactor" class maintains all required parameters for intelligent tactor simulation.

This object includes methods for initialization, command reception, and graphic display.

Figure 146 contains the complete JAVA source code that implements the tactor class.

* Tactor 1.1 ==> This class creates and manages Intelligent Tactors.

Copyright (c) 1999 Jeff Link, All Rights Reserved.
Permission to use, copy, modify, and distribute this software and its
documentation for NON-COMMERCIAL purposes and without fee is hereby

granted.

The author makes on claims regarding the suitability of this software
and shall not be liable for any damages suffered as a result of using,
modifying, or distributing this software or its derivatives.

* % R ok O F o F %

*
[}
[}
1
1
|
]
}
[}
[}
I
i
|
I
]
I
[}
1
1
1
I
I
]
[}
1
1
|
I
I
[}
}
|
i
I
I
[}
I
1
[}
i
1
I
]
|
|
i
i
I
I
I
|
|
|
i
|
I
i
|
|
!
1
I
I
|
|
I
|
i
*
~

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Font;

public class Tactor ({
private int cX, cY, direction;
private int address, state, pwReg, rpReg;
private int pwCount, rpCount, active;
private Color pwFill,rpFill,border;
private Color[] clrState = new Color[3];
private Font labelFont = new Font("Serif", Font.BOLD, 30);
private String strAddr, strPWReg, strRPReg;

Figure 146. Intelligent Tactor object JAVA source code.

212

public Tactor(int in_centerx, int in_centery,
int in_address) {

clrState[0] = Color.gray;
clrState[1] Color.yellow;
clrState[2] = Color.red;
border=Color.black;
pwFill=Color.green;
rpFill=Color.blue;
cX=in_centerx;
cY=in_centery;
direction=in_direction;
address=in_address;
strAddr=String.valueOf (address);
initialize();

} N

/**
* Tnitializes TIC values.
* @param none

*/
public void initialize{() {
state = 0;

pwCount=pwReg=0;
rpCount=rpReg=0;
strPWReg=String.valueOf (pwReg) ;
strRPReg=String.valueOf (rpReg) ;

/**

* Constructs a Tactor.

* @param in_centerx The x-coord of the center

* @param in_centery ‘ The y-coord of the center

* @param in_direction The direction 0 = Left, 1 = Right
* @param in_addree Assigned address: 1 - 126

*/

int in_direction,

Figure 146. Intelligent Tactor object JAVA source code

213

. (continued)

/**
* Sends a command to the TIC.
* @param cmd
*/
public void issueCommand(int cmd) {
switch (state) {
case 0:
if (cmd==address || cmd==127)
state=1;
break;
case 1:
if (cmd>127)
state=2;
if (emd>127 && cmd<192) {
pwReg=pwCount=cmd-128;
strPWReg=String.valueOf (pwReg) ;
rpCount=4*rpReg;
}
if (emd>191 && cmd<256) {
rpReg=cmd-192;
rpCount=4*rpReg;
strRPReg=String.valueOf (rpReg) ;
pwCount=pwReg;

}
break;
case 2:
if (cmd>=0 && cmd<128)
state=0;
if (cmd==address || cmd==127)
state=1;

if (emd>127 && cmd<192) {
pwReg=pwCount=cmd-128;
strPWReg=String.valueOf (pwReg) ;
rpCount=4*rpReg;

}

if (cmd>191 && cmd<256) {
rpReg=cmd-192;
rpCount=4*rpReg;
strRPReg=String.valueOf (¥rpReg) ;
pwCount=pwReg;

}

break;

Figure 146. Intelligent Tactor object JAVA source code

214

. (continued)

/**
* Updates the TIC parameters.
* @param
*/ '
public void updateTactor (int ticks) {
if (pwCount>0)
--pwCount;
if (rpCount>1)
~-~rpCount;
else {
'pwCount=pwReg;
rpCount=4*rpReg;
} .
if (pwCount>0)
active=(ticks%2==0?1:-1);

else
active=0;
}
/**
* Draws the tactor on a graphics object.
* @param g The graphics object which the tactor will be drawn upon.
*/

public void drawTactor (Graphics g) {
int tX=cX+{direction>0?715:-150)-active;
int t¥=cY-54+active;
int dX=138+2*active;
int dy=99-2*active;

g.setColor(clrState[state]);

g.fillRoundRect (tX, tY,dX+1,dyY+1,30,30);

g.setColor (Color.black);

g.drawRoundRect (tX, tY,dX,dy,30,30) ;

g.setFont (labelFont) ;

g.drawString ("PW", cX+ (direction>0?-132:30),c¥-102);

g.drawString ("RP", cX+ (direction>0?-71:106),cY-102);

g.drawString (strPWReg, cX+ (direction>0?-132:30) +charOffset (pwReg) , cY+132);
g.drawString (strRPReg, cX+ (direction>0?-75:102) +charOffset (rpReg) ,cY+132) ;
g.drawString (straddr, cX+(direction>0?60:-105) +charOffset (address), cY+8);
g.setColor(Color.darkGray) ;

g.drawRect (cX+(direction>0?-73:32),c¥-97,44,200);

g.drawRect (cX+(direction>0?-130:104),cY-97,44,200);

g.setColor (Color.lightGray) ;

g.draw3DRect (cX+(direction>0?-72:33),cY-96,42,198, false);

g.draw3DRect (cX+ (direction>0?-129:105),cY-96,42,198, false);

g.setColor (pwFill);

g.fillRect (cX+(direction>0?-128:34),cY+102-3*pwCount, 41, 3*pwCount) ;
g.setColor (rpFill);)
g.fillRect (cX+(direction>0?-71:106),cY+102- (int) (3*rpCount/4),41,

(int) (3*rpCount/4));

Figure 146. Intelligent Tactor object JAVA source code. (continued)

215

private int charOffset(int iTmp) ({
int iRtn=0;
if (iTmp<100)
++iRtn;
if (iTmp<10)
++iRtn;
return iRtn*8;

Figure 146. Intelligent Tactor object JAVA source code. (continued)

2. Command Byte
The "TIC Command” class contains the command byte and transmission time values
for each simulation command. This object includes methods for initialization, parameter
' retrieval, and graphic display. Figure 147 contains the complete JAVA source code that

implements the TIC command class.

/* ___
PTCCommand 1.1 ==> This class manages commands to be sent to the TIC.

Copyright (c) 1999 Jeff Link, All Rights Reserved.
Permission to use, copy, modify, and distribute this software and its
documentation for NON-COMMERCIAL purposes and without fee is hereby

granted.

The author makes on claims regarding the suitability of this software
and shall not be liable for any damages suffered as a result of using,
modifying, or distributing this software or its derivatives.

* % % % F ok F Ok ¥ ¥

*

import java.awt.Graphics;
import java.awt.Color:;
import java.awt.Font;
import java.lang.Math;

public class TICCommand {
private int word, time;
private Color clrText, clrBorder, clrBack;
private Font labelFont = new Font("Serif", Font.PLAIN, 24);
private String strWord;

Figure 147. TIC Command object JAVA source code.

216

/**
* Constructs a TICCommand.

* @param in_word The byte command to transmit
* @param in_time Time to transmit the command
*/

public TICCommand(int in word, int in_time) {

clrText = Color.blue;

clrBorder = Color.black;

clrBack = Color.white;

word=in_woxrd;

time=in_time;

if (word<128)
striWord="A"+String.valueOf (word) ;

else if (word<192)
strWord="P"+String.valueOf (word-128) ;

else
strWord="R"+String.valueOf (word-192}) ;

-}

/**
* Gets the command word.
*/

public int getCommand() {
return word;

}

/**
* Gets the time to transmit.
*/

public int getTime() {
return time;

}

/**

* Draws the TICCommand on a graphics object.

* @param ¢ The graphics object to draw the command upon
* @param cX The x-coord for command center

* @param cY The y-coord for command center

*/

public void drawCommand(Graphics g, int cX, int cY) {
int tX=cX-8, tY¥=cY-23, dX=60, dYy=48;

.setColor (clrBack) ;

.fillRoundRect (tX, tY,dX+1,dY+1,20,20);

.setColor (clrBorder) ;

.drawRoundRect (tX, t¥,dX,dY,20,20) ;

.setColor (clrText) ;

.setFont (labelFont) ;

.drawString (stxrWord, tX+32-strWoxd.length() *7, t¥+35);

QuQuauauaaQaQ

Figure 147. TIC Command object JAVA source code. (continued)

217

3. TIC Demo

The "TIC Demo" class contains the parameters required to combine the tactor and
TIC command classes into an animated tactile array. This class is the core of the applet and
implements multi-threading and mouse event processing. The TIC demonstration
instantiates two intelligent tactors and an array of TIC commands. This object includes
methods for initialization, mouse event processing, animation timing, and graphic display.
The applet continuously loops through time, resetting to zero when the maximum time is
reached. The applet resets to the initial conditions when the.mouse button is released in the

applet active area. Figure 148 contains the complete JAVA source code that implements the

TIC demonstration class.

/ K e e e e e e e ————— o e o = ——— - e o a4 - | 1o - ——— — - — -
* PICDemo 1.1 ==> This class demonstrates TIC operations.

*

* Copyright (c) 1999 Jeff Link, All Rights Reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for NON-COMMERCIAL purposes and without fee is hereby

* granted.

*

* The author makes on claims regarding the suitability of this software
* and shall not be liable for any damages suffered as a result of using,
* modifying, or distributing this software or its derivatives.

*
1
|
]
}
[
[l
1
i
I
i
t
]
]
1
i
1
I
]
[}
}
[}
i
1
1
|
|
t
3
]
]
1
]
]
]
]
|
1
1
|
|
t
]
I
}
]
1
1
I
]
]
|
1
1
|
1
I
I
]
|
1
t
]
]
]
1
1
1
*
~

import java.awt.Graphics;

import java.awt.Color;

import java.awt.Image;

import java.awt.Font;

import java.awt.event.MouseListener;
import java.awt.event.MouseEvent;
import Tactor;

import TICCommand;

Figure 148. Tactile Array Demonstration object JAVA source code.

218

public class TICDemo extends java.applet.Applet
implements Runnable, MouseListener {
private int sleep=100,height=440,width=700,tt,currCmd, lastCmd;
private Tactor tl = new Tactor (180, 170, 0, 1);
private Tactor t2 = new Tactor(520, 170, 1, 2);
private Thread animate=null;
Image backBuffer;
private Graphics backGC;
private TICCommand[] cmdList;
private Font labelFont = new Font("Serif", Font.BOLD, 30);

public void init() { // Initialize all variables and classes
tt=0;
£illCommands () ;
updateTactors() ;
try {
backBuffer = createImage (width, height):
backGC = backBuffer.getGraphics();
} catch (Exception e) { backGC=null; }
addMouseListener(this) ;
}

public void destroy() { // Class destructor
removeMouselListener (this) ;

}

private void fillCommands () { // Fill command array
cmdList = new TICCommand([10];

cmdList[0] = new TICCommand(127,100);
cmdList{1l] = new TICCommand(161,200);
cmdliist[2] = new TICCommand(209,300):;
cmdList[3] = new TICCommand(2,400);
cmdList[4] = new TICCommand(195,500);
cmdList[5] = new TICCommand(0,600);
currCmd=0;

lastCmd=5;

cmdList[6] = new TICCommand(0,0);

}

private void updateTactors() { // Updates the tactors when required

if (tt==0) { // reset tactors and command list when time restarts
tl.initialize();
t2.initialize();
curxCmd=0;

}

if (tt==cmdList{currCmd].getTime()) { // transmit the command
tl.issueCommand (cmdList [currCmd] .getCommand()) ;
t2.issueCommand (cmdList [currCmd] .getCommand ()) ;
++currCmd;

}

tl.updateTactor(tt);

t2.updateTactor (tt);

A Figure 148. Tactile Array Demonstration object JAVA source code. (continued)

219

private void paintApplet(Graphics g) { // Paint the applet
int ii=currCmd; ’
tl.drawTactor(g):
t2.drawTactor(g) ;
while (ii <= lastCmd) {
cmdList[ii].drawCommand (g, cmdList([ii).getTime(), 360);
++ii;
}
}

public void update(Graphics g) { // When update is called

if (backBuffer != null) {
// double-buffering available
backGC.setColor (Color.lightGray) ;
backGC.fillRect (0, 0,width, height) ;
backGC.setColor (Color.white) ;
backGC.fillRect (20,400, tt+1,27);
backGC.setColor (Color.black) ;
backGC.drawRect (20,400,661,27);
backGC.setFont (labelFont) ;
backGC.drawString ("time",width/2-20,425);
paintApplet (backGC) ;
g.drawImage (backBuffer, 0, 0, this);

}

else {
// no double-buffering
g.setColor (Color.lightGray) ;
g.fillRect (0, 0,width, height);
g.setColor(Color.white);
g.fillRect (20,400, tt+1,27);
g.setColor(Color.black);
g.drawRect (20,400,661,27);
g.setFont (labelFont) ;
g.drawString("time",width/2-20,425);
paintApplet(g);

}

}

public void run() { //Run the applet
while (true) {
if (tt<660)
++tt;
else
tt=0; .
updateTactors () ;
repaint () ;
try { Thread.sleep(sleep); } catch (InterruptedException e) { }
}
}

public void start() { // When the applet is started
if (animate == null) ({
animate = new Thread(this);
animate.start();
}
}

Figure 148. Tactile Array Demonstration object JAVA source code. (continued)

220

public void stop() { // When the applet is stopped
if (animate != null)
animate=null;
}

// These functions are required for the MouseListener interface

public void mouseReleased({MouseEvent e) { // Clicked on demo
tt=0;
updateTactors () ;
repaint();

}

public void mousePressed(MouseEvent e) { }
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }

public void mouseClicked(MouseEvent e} { }

Figure 148. Tactile Array Demonstration object JAVA source code. (continued)

4. Demonstration Applet HTML File
A JAVA applet runs as a process embedded in an "html" file. This configuration
allows applets to be executed by any JAVA compliant web browser. Figure 149 contains

the complete HTML code that executes the Tactile Interface demonstration applet.

<html>

<head> ‘

<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">
<title>Tactile Interface Demonstration (l.1l)</title>
</head>

<body bgcolor="#C0COCO">
<hl align="center">Tactile Interface Demonstration</hl>

<p align="center"><applet code="TICDemo.class" codebase="./"
align="baseline" width="700" height="440"></applet> </p>
</body>

</html>

Figure 149. Tactile Demonstration Applet HTML source code.

221

222

APPENDIX E. VLSI LOGIC ELEMENT DESIGN

VLSI logic element design consists of determining the schematic transistor
connections, testing the planned circuit using SPICE simulation, and then constructing the
element using the VLSI layers. This appendix provides those three design phases for all
logic elements in the TIC design.

A. LOGIC ELEMENT SCHEMATICS

The schematics for all logic elements are contained in the following subsections.

1. Inverter

in out

Figure 150. Inverter schematic.

2. Two Input NAND

Figure 151. Two Input NAND Gate schematic.

223

3. Three Input NAND
{I L I
|

—

I__

Figure 152. Three Input NAND Gate schematic.

4. Four Input NAND

)

—H

la

'_
l___

Figure 153. Four Input NAND Gate schematic.

5. Three Input AND

€

l____s

—

Figure 154. Three Input AND Gate schematic.

224

6. Four Input AND

@5 i ?PE)

__.I

| c

]____

la

Figure 155. Four Input AND Gate schematic.

7. Two Input NOR

Figure 156. Two Input NOR Gate schematic.

8. Three Input NOR

Figure 157. Three Input NOR Gate schematic.

225

9. Two Input XOR

7
=

S

Figure 158. Two Input XOR Gate schematic.

10. Two Input XNOR

L L
=

=

Figure 159. Two Input XNOR Gate schematic.

226

11. D Flip Flop with Clear

nClear

cz

s :
O\ B AR P
sl P—EJ;_H H@Ek

I._i

clock

nQ Q

Figure 160. D Flip Flop with Clear schematic.

12. Two Input Multiplexer

Figure 161. Two Input Multiplexer schematic.

B. LOGIC ELEMENT SPICE SIMULATIONS
The SPICE simulation files used to evaluate logic element design response are

contained in the following subsections.

227

1. Inverter

* File: inverter.cir
* CMOS Inverter DC Transfer Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals
VINa a 0 PULSE(0 5 .5N 1N 1IN 19N 40N)

* Main Circuit
Xia a o 1 0 INV

Cl o0 .1P

* Simulation Parameters
.TRAN .001N 40N

.END

Figure 162. Inverter SPICE model source code.

2. Two Input NAND

* File: nand2.cir
* CMOS 2-input NAND Transient Characteristics

* CMOSP & CMOSN model definitions

.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals
VINZ a 0 PWL(On 5 10n 5 11n 0 20n 0 21n 5 30n 5 31n 0 40n 0 41n 5 50n 5 51n 5

60n 5 61ln 5 70n 5 71n 0 80n 0 81n 0 90n 0 91n 0 100n 0 101ln 5
110n 5 11in 0 120n 0 121n 5 130n 5 131n 0 140n 0)

VINb b 0 PWL{(On S 10n 5 1in 0 20n 0 21n 5 30n 5 31n 5 40n 5 4In 5 50n 5 5in 0
60n 0 61n 5 70n 5 71n 0 80n 0 81In 5 90n 5 91n 0 100n 0 101n O
110n 0 111ln 5 120n 5 121n 0 130n 0 131n O 140n 0)

* Main Circuit
Xla a b o 1 0 NAND2

Cl o0 .1P

* Simulation Parameters
.TRAN .001N 140N

.END

Figure 163. Two Input NAND gate SPICE model source code.
228

3. Three Input NAND

* File: nand3.cir

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

VINa a 0 PWL(On 5 10n 5 11n 5 20n
60n 0 61in 5 70n 5)

VIND b 0 PWL(On 5 10n 5 1in 5 20n
60n 5 6in 5 70n 5)

VINC ¢ 0 PWL(On 5 10n 5 11n 0 20n
60n 5 61n 5 70n 5)

* Main Circuit
Xla a b ¢ o 1 0 NAND3

Cl o0 .1P

* Simulation Parameters
.TRAN .0001N 70N

.END

* CMOS 3-input NAND Transient Characteristics

5 21n 5 30n 5 31n 5 40n 5 4in 5 50n 5 51n O
5 2ln 5 30n 5 31n 0 '40n 0 41n 5 50n 5 Sln S

0 21n 5 30n 5 31n 5 40n 5 41n 5 50n 5 5In 5

Figure 164. Three Input NAND gate SPICE model source code.

229

4. Four Input NAND

Ma
Mb
Mc
Md
Me
ME
Mg
Mh

Ccl

1

BHWRNRPO

o]

.END

* File:
* CMOS 4-input NAND Transient Characteristics

VINc ¢

VING d

* Main

200000000

0

nand4.cir

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Power Supplies
VDS 1 0 5

* Input Signals
VINa a 0 PWL(On 5 10n 5 11n 5 20n 5 2in 5 30n 5 31n 5 40n 5 4In 5 50n 5 51n 0

60n 0 61ln 5 70n 5 71n 5 80n 5 81ln 5 90n 5)

60n 5 61n 5 70n 5 71in 5 80n 5 81In 5 90n 5)

0 PWL(On 5 10n 5 11n 0 20n 0 21n 5 30n 5 31n 5 40n
60n 5 61n 5 70n 5 71ln 5 80n 5 81n 5 90n 5)

0 PWL{(On 5 10n 5 11n 5 20n 5 21n 5 30n 5 31n 5 40n
60n 5 61n 5 70n 5 7in 0 80n 0 81n 5 90n 5)

Circuit

o 1 CMOSP W=6U L=2U
2 0 CMOSN W=3U L=2U
o 1 CMOSP W=6U L=2U
3 0 CMOSN W=3U L=2U
o 1 CMOSP W=6U L=2U
4 0 CMOSN W=3U L=2U
o 1 CMOSP W=6U L=2U
0 0 CMOSN W=3U L=2U
1P

* Simulation Parameters
.TRAN .0001N 90N

VINb b 0 PWL(On 5 10n 5 11n 5 20n 5 21n 5 30n 5 31n 0 40n 0 41n

5 41n

5 41n

5 50n 5 51n 5

5 50n 5 51n 5

5 50n 5 51n 5

Figure 165. Four Input NAND gate SPICE model source code.

230

5. Three Input AND

3

* File: and3.cir

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
. INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

VINa a 0 PWL(On 5 10n 5 11n 5 20n
60n 0 61n 5 70n 5)

VINb b 0 PWL(On 5 10n 5 11n 5 20n
60n 5 61ln 5 70n 5)

VINc ¢ 0 PWL(On 5 10n 5 11n 0 20n
60n 5 61n 5 70n 5)

* Main Circuit

Xla a b ¢ 2 1 0 NAND3
Xia 2 01 0 INV

Cl o0 .1P

* Simulation Parameters
.TRAN .0001N 140N

.END

* CMOS 3-input AND Transient Characteristics

521n 5 30n 531n 5 40n 5 41n 5 50n 5 51n 0
52ln 530n 5 31n 0 40n 0 4In 5 50n 5 51n 5

02ln 530n 531n 5 40n 5 41n 5 50n 5 51n 5

Figure 166. Three Input AND gate SPICE model source code.

231

6. Four Input AND

Ma
Mb
Mc
Md
Me
Mf
Mg
Mh

1

AR WRNREO

.END

* File:
* CMOS 4-input AND Transient Characteristics

VINc ¢

VING 4

* Main

2000000 D

and4.cir

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Power Supplies
VDS 1 0 5

* Input Signals
VINa a 0 PWL(On 5 10n 5 11n 5 20n 5 21n 5 30n 5 31n 5 40n 5 41n 5 50n 5 51n O

60n 0 61n 5 70n 5 71n 5 80n 5 81ln 5 90n 5)

60n 5 61n 5 70n 5 71n 5 80n 5 81ln 5 90n 5)

0 PWL(On 5 10n 5 11n 0 20n 0 2In 5 30n 5 31n 5 40n
60n 5 6In 5 70n 5 71n 5 80n 5 8in 5 90n 5)

0 PWL(On 5 10n 5 11n 5 20n 5 21n 5 30n 5 31In 5 40n
60n 5 61n 5 70n 5 71n 0 80n O 81n 5 90n 5)

ircuit

1 CMOSP W=6U L=2U
CMOSN W=3U L=2U
CMOSP W=6U L=2U
CMOSN W=3U L=2U
CMOSP W=6U L=2U
CMOSN W=3U L=2U
CMOSP W=6U L=2U

C
5
2
5
3
5
4
5
0 CMOSN W=3U L=2U

OrORPORFrOo

Xia 5 0 1 0 INV
Cl o0 .1P

* Simulation Parameters
.TRAN .0001N 90N

VINbD b 0 PWL(On 5 10n 5 11n 5 20n 5 21n 5 30n 5 31n 0 40n 0 41n 5 50n 5 51n

5 41n 5 50n 5 51n

S 41n 5 50n 5 51n

5

5

Figure 167. Four Input AND gate SPICE model source code.

232

7. Two Input NOR

* File: mnor2.cir
* CMOS 2-input NOR Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir :
.INCLUDE subckt.cir

* Power Supplies
VDS 1.0 5

* Input Signals

VINa a 0 PWL(On 0 10n O 11n 0 20n 0 21n 0 30n 0 31n 5 40n 5 4In 0 50n 0 51n 5
60n 5 61n 0 70n 0 71n 5 80n 5 81n 5 90n 5 91n 0 100n O 101n 5
110n 5 111n 5 120n 5 121n 0 130n 0)

VINb b 0 PWL(On 0 10n 0 11n 5 20n 5 21n.0 30n 0 31n 0 40n 0 41n 0 50n 0 51n 5
60n 5 61ln 5 70n 5 71n 5 80n 5 81n 0 90n 0 91n 5 100n 5 101n O
110n 0 111n 5 120n 5 121n 0 130n 0)

* Main Circuit
Xla a b o 1 0 NOR2

Cl o0 .1P

* Simulation Parameters
.TRAN .0001N 130N

.END

Figure 168. Two Input NOR gate SPICE model source code.

233

8. Three Input NOR

* File: nor3.cir
* CMOS 3-input NOR Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals .
VINa a 0 PWL(On 0 10n O 1In O 20n 0 21n 0 30n 0 31n 0 40n 0 4in 0 50n 0 51n 5

60n 5 61ln 0 70n)
VIND b 0 PWL(On 0 10n 0 11n 0 20n 0 21n 0 30n 0 31n 5 40n 5 41n 0 50n 0 51n 0

60n 0 61n 0 70n)
VINc ¢ 0 PWL(On 0 10n 0 11n 5 20n 5 21n 0 30n 0 31n 0 40n 0 41n 0 50n 0 51n O

60n 0 61n 0 70n)

* Main Circuit
Xla a b c o 1 0 NOR3

Cl o0 .1P

* Gimulation Parameters
.TRAN .0001N 70N

.END

Figure 169. Three Input NOR gate SPICE model source code.

234

9. Two Input XOR

* File: xor2.cir .
* CMOS 2-input XOR Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VvDS 1 0 5

* Input Signals
VINa a 0 PWL(On 0 10n 0 11n 0 20n 0 21n 0 30n 0 31n 5 40n 5 41n 0 50n 0 51n 5

60n 5 61n 0 70n 0 7In 5 80n 5 81n 5 90n 5 91n 0 100n 0 101n 5
110n 5 111n 5 120n 5 121n O 130n 0)

VINb b 0 PWL(On 0 10n 0 11n 5 20n 5 2in 0 30n 0 31n 0 40n 0 41n 0 50n 0 51n 5
60n 5 61n 5 70n 5 71n 5 80n 5 81n 0 90n 0 91n 5 100n 5 101n O
110n 0 111n 5 120n 5 121n 0 130n 0)

* Main Circuit
Xla a b o 1 0 XOR2

Cl o 0 .1P

* Simulation Parameters
.TRAN .0001N 130N

.END

Figure 170. Two Input XOR gate SPICE model source code.

235

10. Two Input XNOR

* File: xnor2g.cir
* CMOS 2-input XNOR-gate Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir

* Power Supplies
VDS 1 0 5

* Input Signals
VINa a 0 PULSE(5 0 5.5N 1N 1N 9N 20N)
VINb b 0 PULSE(5 0 .5N 1N 1IN 24N 50N)

* Main Circuit

Ma 1 a 2 1 CMOSP W=6U L=2U
Mb 2 a 0 0 CMOSN W=3U L=2U
Mc 1 2 4 1 CMOSP W=6U L=2U
Md 4 2 0 0 CMOSN W=3U L=2U
Me 4 3 o 1 CMOSP W=6U L=2U
Mf 4 b o 0 CMOSN W=3U L=2U
Mg 2 b o 1 CMOSP W=6U L=2U
Mh 2 3 o 0 CMOSN W=3U L=2U
Mi 1 b 3 1 CMOSP W=6U L=2U
Mj 3 b 0 0 CMOSN W=3U L=2U
Cl o O .1P

* Simulation Parameters
.TRAN .005N 100N

.END

Figure 171. Two Input XNOR gate SPICE model source code.

236

11. D Flip Flop with Clear

* File: dflopgc.cir
* CMOS D-FLIP/FLOP gated w/ Clear Transient Characteristics

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 5

* Input Signals

VINA d 0 PULSE(0 5 .5N 1IN 1N 19N 40N)

VINnc nc 0 PWL(On 5 48n 5 49n 0 50n 0 51n 5 112n 5 113n 0 117n O 118n 5
125n 5)

VINclk clk 0 PULSE(0 5 2.5N 1N 1IN 9N 20N)

* Main Circuit
Xda 4 clk nc g ng 1 0 DFLOPGC

Cl g0 .1p
C2 ng 0 .1P

* Simulation Parameters
.TRAN .001N 125N

.END

Figure 172. D Flip Flop with Clear logic element SPICE model source code.

237

12. Two Input Multiplexer

* File: mux2.cir

* CMOSP & CMOSN model definitions
.INCLUDE cmos.cir
.INCLUDE subckt.cir

* Power Supplies
VDS 1 0 S

* Input Signals
VINa a 0 PWL(On 5 10n 5 11ln 5 20n
60n 0 61ln 5 70n 5)

VINb b 0 PWL(On 5 10n 5 1ln 5 201
60n 5 6In 5 70n 5)

VINsS s 0 PWL(On 5 10n 5 11n 0 20n
60n 5 61ln 5 70n 5)

* Main Circuit
Xla a b s ol 0 MUX

Cl o0 .1P

* Simulation Parameters
.TRAN .0001N 140N

.END

* CMOS 2-input MUX Transient Characteristics

5 21n 5 30n 5 31In 5 40n 5 41n 5 50n 5 5In O
5 2In 5 30n 5 31n 0 40n 0 41n 5 50n 5 51n 5

0 2In 5 30n 5 31n 5 40n 5 41n 5 50n 5 5Iln 5

Figure 173. Two Input MUX logic element SPICE model source code.

238

C. VLSILAYOUT

1. Legend of Layout Layers

Graphic Symbol

Layer Description

N well - a region of the silicon substrate that has
more free electrons than free holes. -

Jig

P well - a region of the silicon substrate that has
more free holes than free electrons.

Active - layout area to be implanted with impurities
to provide primary charge carriers.

Active X - connection shaft that allows contact
between metal 1 and the active area.

P select - boundary of area to be implanted with an
impurity providing free holes.

N select - boundary of area to be implanted with an
impurity providing free electrons.

Poly 1 - polysilicon doped for improved
conduction; primarily used for FET gates.

N

Poly 1 Connect - connection shaft that allows
contact between metal 1 and polysilicon.

Metal 1 - lowest layer of aluminum used to route
signals and power.

Metal 2 - upper layer of aluminum used to route
signals and power.

Via X - connection shaft between metal 1 layer and
metal 2.

Table 25. Legend for Layers used in VLSI Layout.

239

2. Inverter

Figure 174. Inverter layout.

240

3. Two Input NAND

”.
-
”
s

Figure 175. Two Input NAND Gate layout.

241

4. Three Input NAND

L === oL e

¥

A ALY
TR

o

$TILEE

Figure 176. Three Input NAND Gate layout.

242

5. Four Input NAND

LB

%

N £ 772 N 14

8
-
\
N
NN

|

z =

It

243

Figure 177. Four Input NAND Gate layout.

A H
AR

B fq\\}

HEE I E L L E DL DR EL
SHILVRI T

iy Y ik

\béi\}\\ o

XN

e

TR,

244

I e
N

6. Three Input AND

q
NS SANENY

Figure 178. Three Input AND Gate layout.

7. Four Input AND

Figure 179. Four Input AND Gate layout.

245

8. Two Input NOR

v

ANNE RN

PR ERANERA

nvea

=R

R

.

X

SRANYNY

LA NRNY

Figure 180. Two Input NOR Gate layout.

246

xxxxx

2 e

¢ R A NRN XS]

T

0

?

)

==

s

el

I

@@ = &\\\§§§ mwwﬂ 7

9. Three Input NOR

247

Figure 181. Three Input NOR Gate layout.

10. Two Input XOR

Jric [22

o

NI

Two Input XOR Gate layout.

Figure 182

248

11. Two Input XNOR

JRVIEES xih‘xfx..

5
%

oLt

PP SERTRTA S LR IANS

ELIAAY

3

S48

:.’si‘:;_-‘}k‘um’u‘ﬁki Y

e S e R
T B s

Figure 183. Two Input XNOR Gate layout.

249

12. D Flip Flop with Clear

I

|

Figure 184. D Flip Flop with Clear layout.

250

Flotutvenu i sa e oo e S Tt e o e o e
T el N Sl s TN Nl s T e A I P s ™
x o

..........

............

iR

£
4

i

Sf\\\
N
.

3.
|

SRR

1 \ﬂ
$
1
NS

T AT

e

E e T T T P P R iy

13. Two Input Multiplexer

251

Figure 185. Two Input Multiplexer layout.

252

- APPENDIX F. PARALLEL DATA MODULATOR DESIGN

Each module used to create the Parallel Port Data Modulator was first modeled
using Verilog®. When proper system operation was obtained, ABEL"™ was used to create
the required JEDEC format data files for PLD programming. Reference 5 contains
extensive information regarding PLD programming using ABEL" and includes an
educational version of the ABEL™ software written by Data I/O Corporation.

A. COMMAND MODULATOR DESIGN USING VEREOG®
The Paralle] Port Data Modulator was modeled and tested using Verilog®. The

source code for the test program is provided in Figure 186.

253

//***

// File: =xmit_test.v
//
// Description: Test bench for Parallel Port Data Modulator

//
// Author: Jeff Link

//***

module xmit_test;

reg [7:0} &;
reg Str;

wire [7:0] a;
wire [3:0] s;
reg Vdd, Gnd;

clock clkl (clk);

reg4_pls rgda (d[7:4],vdd,vdd,clk,q[7:4],Ea,0a);
regd_pls rg4b (d[3:0]1,Ea,Oa,clk,q[3:0],eq,0dd);
mux8tl mx (a,s[2:0],mxout) ;

control cntl (Str,eq,mxout,odd,clk,s,ackn,busy,out);

initial begin
vad=1;
Gnd=0;
d=55;
Str=0;
$display("\t\t\t a out ackn busy s");
Smonitor{"time %0d \t%b %b %b $b %d", $time,d, out, ackn,busy,s) ;
#5;
Str=1;
#20 Str=0;
#400

d=85;

#20

Str=1;

#20 Str=0;
#400

d=205;

#20

Str=1;

#20 Str=0;

#400

$finish;
end

/* always @ (g) begin
if (odd == "~q) begin
$display("time %0d \t%b %b %b %b Parity Error",$time,d,q, eq,odd) ;
end
end
*/
endmodule

Figure 186. Test bench for Parallel Port Data Modulator Verilog® model source code.

254

1. Four-Bit Register with Equality and Parity Calculation
The four-bit register with equality and parity calculation was modeled and tested
using Verilog®. The source code for the test program is provided in Figure 187 and the

source code for the model is provided in Figure 188.

//***

|
|
|
// File: regd4_pls_test.v
//
// Description: Test bench for Four-Bit Register w/ Equal & Parity
/7 . ' i
// Buthor: Jeff Link

//***

module regd_pls_test;

reg [7:0] d;
wire clk;
wire [7:0] q;
reg Vvdd, Gnd;

clock clkl (clk);
regd4_pls rgia (d[7:4]1,vdd,vdd,clk,ql7:4],Ea,0a);
reg4_pls rgd4b (d[3:0],Ea,Oa,clk,q[3:0],eq,0dd);

initial begin
vdd=1;
Gnd=0;
d=0;
Sdisplay("\t\t\t d q eq odd");
Smonitor("time %04 \t%b %$b %b %b",S$time,d,q,eq,0dd);
#5;
for (d=0; d<255; d=d+1) begin

|
#40;
end
$finish;
end

endmodule

Figure 187. Test bench for Four-Bit Register Verilog® model source code.

255

//***

// File: regd4_pls.v

/7
// Description: Behavioral Model of Four-Bit Register w/ Equal & Parity.

//
// Author: Jeff Link

//***

module reg4_pls (4,Ein,0Oin,clk, g,Eout,Oout);
input d,Ein, Oin,clk;
wire [3:0] d;
output g, Eout,Oout;
reg [3:0] q;
reg Eout,Oout;

always @(d) begin
Eout = (g == d)&Ein;
end

always @(Ein) begin
Eout = (g == d)&Ein;

end

always @(0in) begin
Oout = (~g)"0in;

end

always @(posedge clk) begin

q=d;
Eout = (g == d)&Ein;
Oout = (~qg)"0in;

end

endmodule

Figure 188. Four-Bit Register Verilog® model source code.

2. Control State Machine

The control state machine was modeled and tested using Verilog®. The source code
for the test program is provided in Figure 189 and the source code for the model is provided

in Figure 190.

256

//***

// File: control_test.v

//

// Description: Test bench for Control State Machine
// .

// Author: Jeff Link

//***

module control_test;

reg Str,EqIn,Din,Par;
wire clk;

wire [3:0] s;

reg vdd, Gnd;

clock clkl (clk);
control cntl (Str,EqgIn,Din,Par,clk,s,ackn,busy,out);

initial begin
‘Vdd=1;
Gnd=0;
$display("\t\t\tStr EQIn Din Par s ackn busy out");
$monitor("time %0d \t ¥b %b b %b %d %b %b %b",

$time, Str,EqIn,Din, Par, s, ackn,busy,out) ;

Str=0;
EqIn=0;
Din=1;
Par=0;
#5;
Str=1;
#20;
EqIn=1;
#20; :
Str=0;
#20;
Din=0;
#20;
Din=1;
#20;
Din=1;
#20;
Din=0;
#20;
Din=1;
#20;
Din=0;
#20;
Din=1;
#200;
$finish;

end

/* always @ (g) begin
if (odd == ~q) begin
$display("time %038 \t%b ¥b %b %b Parity Error",Stime,d,q,eq,odd);
end :
end
*/
endmodule

Figure 189. Test bench for Control State Machine Verilog® model source code.
257

//***

// File: control.v
//
// Description: Behavioral Model of Control State Machine

//
// Author: Jeff Link

//***

module control (Str,EgIn,Din,Par,clk,st,ackn,busy,out);
input Str, EgIn,Din, Par,clk;
output st,ackn,busy,out;
reg [3:0] st;
reg ackn, busy,out;

initial begin
st = 0;
ackn=0;
busy=0;
out=1;

end

always @(posedge clk) begin

case (st)
0: if (Str&EqIn) st = 4;
4: st = 12;
12: st = 8; ~
8: st = 9;
9: st = 11;
11: st = 10;
10: st = 14;
14: st = 15;
15: st = 13;
13: st = 5;
5: st = 1;
1: st = 0;
endcase
end

always @(st) Dbegin
if (st == 0) busy = 0;
else busy = 1;
if (st == 4) ackn = 1;
else ackn = 0;

if (st == 0) out = 1;
else if (st == 1) out = 1;
else if (st == 4) out = 0;
else if (st == 5) out = Par;
else out = Din;

end

always @(Din) begin
if (st == 0) out = 1;
else if (st == 1) out = 1;
else if (st == 4) out = 0;
else if (st == 5) out = Par;
else out = Din;

end

endmodule

Figure 190. Control State Machine Verilog® model source code.
258

3. Eight-to-One Multiplexer
The eight-to-one multiplexer was modeled and tested using Verilog®. The source
code for the test program is provided in Figure 191 and the source code for the model is

provided in Figure 192.

//***

// File: mux8tl_test.v

//

// Description: Test bench for Eight to One Multiplexer
//

// Author: Jeff Link

//***

module mux8tl_test;

reg [7:0] 4&;
reg [2:0] sel;
reg Vdd,Gnd;

mux8tl mxl (d,sel,out);

initial begin
vdd=1;
Gnd=0;
d=0; .
sdisplay("\t\t\t d sel out”);
$monitor("time %0d \t%b %b %b",$time,d,sel,out);
#5;
for (d=55; d<199; d=d+13) begin
for (sel=0; sel<7; sel=sel+l) Dbegin
#40;
end
#40;
end

$finish;
end

/* always @ (g) begin
if (odd == ~q) begin
$display("time %04 \t%b %b %b %b Parity Error", $time,d,q,eq,odd);
end
end
*/
endmodule

Figure 191. Test bench for Eight-to-One Multiplexer Verilog.® model source code.

259

//***

// File: mux8tl.v

// .

// Description: Behavioral Model of Eight to One Multiplexer.
//

// Author: Jeff Link

//***************************************'********************************

module mux8tl (a,sel,out);
input a,sel;
wire [7:0] a;
wire [2:0] sel;
output out;
reg out;

always €@(sel) begin
case (sel)

0: out = al[6];
1: out = al5];
2: out = af3);
3: out = al4];
4: out = al7];
5: out = af0];
6: out = af2];
7: out = alll;
endcase
end
endmodule

Figure 192. Eight-to-One Multiplexer Verilog® model source code.

260

B. COMMAND MODULATOR IMPLEMENTATION USING ABELTM

When operating properly, the Parallel Port Data Modulator elements defined using
Verilog® were converted to JEDEC file férmat using ABEL"™. The source code created for
this ’conversion is included in the following subsections. These programs were compiled
and optimized to create the JEDEC format data files needed for PLD programming.

1. Four-Bit Register with Equality and Parity Calculation

The four-bit register with equality and parity calculation was converted from

Verilog® source code to JEDEC format using the ABEL" code provided in Figure 193.

261

Module reg4_pls

Clk pin
D4..D1 pin
Q4..01 pin
!Ein pin
Oin pin
ODD pin
EQ pin
1Eout pin
Oout pin
Input = [D4
Output = [Q4
Equations
Qutput =
Output.clk =
EQ =
Eout =
ODD =
Oout =

[

Lo N B e W e W B e e R R e i e el e e]

End

OCORPRPRPOORPRKRPROORPRRPROORPRFFPOORPRPOORPOORR OO

Title ‘Four-Bit Register with Equality & Parity outputs’

1;

2..5;

19..16 istype ‘reg,buffer’;
8;

9;

14 istype ‘com’;
15 istype ’‘com’;
13 istype ‘com’;
12 istype ‘com’;
.D1];

.Q11:

Input;

1Clk;

(Output == Input);
EQ & Ein;

04 $ Q3 § Q2 $ Q1;
ODD $ Oin;

Test_Vectors ([Clk,Input,!Ein,0in] -> [Output, !Eout,Oout])

,“h0, 0, 01->["0 , 0 ,0 I;
, 0, 0,13} ->["n0 , O ,1 1JI;
,”h0, 1,11 ->["0 , 1 ,1 1;
, “h0, 1,01 ->0["0 , 1 , 0 1;
, k0, 0,01 ->["0 , O , 0 I;
, *h7, 0,11 ->["0 , 1 ,1 1;
N Ah7 ’ O ’ 0] - [Aho ’ l ’ 0]:'
, *h7, 0,01 ->["0 , 1 , 0 1;
, ”~h7 , 0, 01 ->1["h7 , o , 1 1;
,*h7, 0,11 ->10["7 , 0 ,0 1;
, *h7, 0,01 ->10["n7 , 0 ,1 1;
, hF, 0,01 ->["7 , 1 ,1 1;
, F, 0, 01 ->["F , 0 , 0 I;
1) ~hF ' 0 v 0] -> [~hF ’ 0 ’ 0]r'
,*hF, 1,01 ->["F , 1 ,0 J;
’ A}'.lF ’ 1 ’ 1] -> [AhF 1 1 ’ 1];
,*hF , 0,211 ->["F , 0 , 1 13;
, *h0, 0,01 ->["hF , 1 , 0 1I;
, 0, 1,01 ->["F , 1 ,0 1I;
,*h0 , 0,11 ->["F , 1 ,1];
,*h0, 0,11 ->["0 , O ,1 1:
,”h0, 0,01 ->["n0 , O , 0 1I:
, "0, 0,01 ->["0 , O ,0 1;
, *h2, 0,01 ->["0 , 1 ,0 1;
, *h2, 0,01 ->(["2 , 0 ,1 1;
, *h2, 0,11->["h2 , 0 ,0 1;
, ”h2, 1,01 ->["h2 , 1 ,1 1:
, ”h2, 1,11 ->1[0["h2 , 1 ,0 1;
,”h2, 1,01 ->1["2 , 1 ,1 1;
, *h2, 0,01 ->["h2 , 0 ,1 1:

Figure 193. Four-Bit Register ABEL"™ source code.

262

2. Control State Machine

The control state machine was converted from Verilog® source code to JEDEC

format using the ABEL™ code provided in Figure 194.

module control
title ’‘Control State Machine

| Clk pin 1; "Inputs
| Din pin 2;
I Par pin 9;
Strb pin 11; "Strobe is active low
| IEin pin 8;
1 s3..s0 pin 16..19 istype ‘reg’; "State bits
out pin 14 istype ‘reg,buffer’;
busy pin 12 istype ‘reg’;
| Ackn pin 13 istype ‘reg’;
| istrb pin 15 istype ‘com’;
Equations
[s3..80].clk = Clk;
out.clk = Clk;
busy.clk = Clk;
Ackn.clk = Clk;
- istrb = 1Strb;
|
‘ State_Diagram [s3..s0]
State 0: out := 1; "Idle state
{ busy := 0;
| Ackn := 1;
If (iStrb&Ein) Then 4 Else 0 ;
State 4: out := 1; "Standby, wait for strobe to reset
busy := 1; " so that you only send one byte.
Ackn := 0;
If (!'iStrb) Then 5 Else 4 ;
State 5: out := 0; "Start bit
= 1;
Ackn := 1;
Goto 13;

|
i

busy :
Figure 194. Control State Machine ABEL" source code.
|
|

263

State 13: out := Din; "Data bits
busy := 1;
Ackn := 1;
Goto 12;
State 12: out := Din;
busy := 1;
Ackn := 1;
Goto 8;
State 8: out := Din;
busy := 1;
Ackn := 1;
Goto 10;
State 10: out := Din;
busy := 1;
aAckn := 1;
Goto 14;
State 14: out := Din;
busy := 1;
Ackn := 1;
Goto 15;
State 15: out := Din;
busy := 1;
Ackn := 1;
Goto 11;
State 11: out := Din;
busy := 1;
Ackn := 1;
Goto 9;
State 9: out := Din;
' busy := 1;
Ackn := 1;
Goto 1;
State 1: out := Par; "Parity bit
busy := 1;
Ackn := 1;
Goto 0;

Figure 194. Control State Machine ABEL" source code. (continued)

264

.s0],out,busy

-> [[s3.

Test_Vectors ([Clk,Din ,Strb,Ein,Par]

L T N T T T S T S N e e

Kooo oo o dddrddddddddd-HdAdArddddrdAdAAdd-dAdddd A A 100000

D T T N N S S N N SN R T T S S N

KA A A A A A AT A AT A A0 O AAHOO0OO0OO0OA OO AHOOH OO vt =

L N

’
’
’
’
’
'
’
’

L N T N N

L T NN

COO0O0O A drdddd A -l A A A A A A AAAAAAAAAAAAAAA A A A A A

D S S e T S N T N N N N N

A O OO OO0 OO0 d st el derledrd A cd A A cddd A A

L N N N N N N T R S N T N

L N N N N N N Y N

OCHOHOAOHOHOHOHOMOHOHOHOHOHOHOHOHOHOHO HO

s L b L e L L b L e L s b L b b L b b et e L b b bt bmd At) b e et G b)) e el et e

End

™

Figure 194. Control State Machine ABEL source code. (continued)

3. Eight-to-One Multiplexer

The eight-to-one multiplexer was converted from Verilog® source code to JEDEC

format using the ABEL"™ code provided in Figure 195.

265

module mux8tl

Title ‘Eight to One Multiplexer’
Clk pin 11;
a7..a0 PIN 9..2;
s2..s0 PIN 14..12;
out PIN 15 ISTYPE ’‘com’;
nClk pin 16 istype ’‘com’;

A = [a7..a0];
Select = [s2..s0];
Equations
out = (Select == 1) & a0
(Select == 3) & al
(Select == 7) & a2
(Select == 6) & a3
(Select == 2) & a4
(Select == 0) & a5
(Select == 4) & aé
(Select == 5) & a7;
nClk = 1Clk;
Test_Vectors ([Select, A ,Clk] -> [out,nClk])
[5 ,~haa, 0] -> [1,1 1;
[4 ,“haa, 1] -> [0, 0 1;
[© ,“haa, 0] -> [1,1 1;
[2 ,h2a, 0] -> [0, 1 1:
[6 ,~haa, 11 -> {1, 0 1J;
[7 ,~haa, 11 -> [0, 0 1;
[3 ,“haa, 0] -> [1,1 1:
[1 ,haa, 1] -> [0, 0 1;
[5 ,~h55, 0] -> [0, 1 1J:
[4 ,~hs5, 11 -> [1, 0 1:
[O ,“h55, 01 -> [0, 1 1;
[2 ,“h55, 91 -> [1,1 1];
[6 ,~h55, 11 -> [0, 0 1;
[7 ,~h55, 11 ->[1, 0 1;
[3 ,“h55, 0] -> [0, 1 1;
[1 ,h55, 1] -> [11 0]I

End

Figure 195. Eight-to-One Multiplexer ABEL"™ source code.

266

C. COMMAND MODULATOR ELEMENT INFORMATION

Compilation of the ABEL"™ source code presented in the preceding section created
the JEDEC format data files. These JEDEC data files were used to program the PLDs to
perform the defined logic functions. Information is generated in the compilation process
regarding utilization, performance, and layout. This chip information is written to a text file
and the essential information from these files is included in the following subsections.
Especially useful is the chip pin assignment diagram; required for laying out the printed

circuit board.

267

1. Four-Bit Register with Equality and Parity Calculation

Information regarding the four-bit register with equality and parity calculation is

included in Figure 196.
Four-Bit Register with Equality & Parity outputs
==== P18CV8 Programmed Logic ====
ODD = (101 & Q2 & Q3 & Q4
Q1 & !Q2 & Q3 & Q4
Q1 & Q2 & !Q3 & Q4
101 & !'Q2 & !1Q3 & Q4
Ql & Q2 & Q3 & !Q4
101 & 102 & Q3 & !Q4
101 & Q2 & 103 & 104
QL & !Q2 & !Q3 & !Q4);
EQ = !(!D1 & Q1
D1 & !Q1
D2 & Q2
D2 & !Q2
ID3 & Q3
D3 & !Q3
D4 & Q4
D4 & 1Q4);
Eout = !(EQ & !Ein);
Oout = (!ODD & Oin
ODD & !0in);
Q4.D = (D4); " ISTYPE ’'BUFFER’
p4a.c = (IClk):
Q3.D = (D3); " ISTYPE ’'BUFFER’
Q3.C = (IClk):
Q2.Di = {(D2); " ISTYPE 'BUFFER’
Q2.C = (1I1Clk);
Q1.D = (D1); " ISTYPE ’'BUFFER’
Ql.C = IClk);

Figure 196. Four-Bit Register Summary Information.

268

1
I}
i}
]
v}
=
o]
Q
<
[ee]
(@)
oy
[¥S
e}
]
}_l.
12
Q
i
i
1
1
i}

==== P18CV8 Resource Allocations ====

Device Resource Design
Resources Available Requirement
Dedicated input pins 10 7
Combinatorial inputs 10. 7
Registered inputs - 0
Dedicated output pins - 2
Bidirectional pins 6
Combinatorial outputs 4
Registered outputs - 4
Reg/Com outputs 8 -
Two-input XOR - 0
Buried nodes - 0
Buried registers - 0
Buried combinatorials - 0

P18Cvs
R \ [=mm—————-

\ /

Clk .
D4 2
D3 3
D2 4
D1 5
6
7
Ein 8
Oin 9
GND | 10

+
20 Vece
19 Q4
i8 Q3
17 Q2
16 01
15 'EQ
14 ODD
13 'Eout
12 Oout
11
Part

Utilization

7

7

Unused

Figure 196. Four-Bit Register Summary Information. (continued)

269

Signal Pin Terms Terms Terms
Name Assigned Used Max Unused
ODD 14 8 8 0
EQ 15 8 8 0
Eout 13 1 8 7
Oout 12 2 8 6
Q4 .REG 19 1 8 7
Q3 .REG 18 1 8 7
Q2 .REG 17 1 -8 7
Q1.REG | 16 1 8 | 7

== List of Inputs/Feedbacks ====

Signal Name Pin Pin Type
D4 2 INPUT
D3 3 INPUT
D2 4 INPUT
D1 5 INPUT
Clk 1 CLK/IN
Q1 16 BIDIR
Q2 17 BIDIR
Q3 18 BIDIR
Q4 19 BIDIR
EQ 15 BIDIR
Ein 8 INPUT
ODD B 14 BIDIR
Oin : S INPUT

Pin | Pin | Product | Flip-flop
Number | Type | Terms | Type
==s===== | ======== I sSSmsmEEm====s I S=S=Ess=====

6 | 1INPUT | - - [-
7 | INPUT | - | -
11 | INPUT | - | -

Figure 196. Four-Bit Register Summary Information. (continued)

270

2. Control State Machine

Information regarding the control state machine is included in Figure 197.

sl.D
sl.C

s0.D

s0.C

out.D

out.C

busy.D

busy.C

Ackn.D

Ackn.C

Control State Machine

P18CV8 Programmed Logic ====

= (1Strb);:

s3.FB & sl1.FB
s2.FB & !sl1.FB & s0.FB
s3.FB & !s0.FB);

Clk);

" ISTYPE ’'BUFFER’

1s3.FB & s2.FB & !sl.FB
s2.FB & !sl1.FB & s0.FB

#
s3.FB & sl
#

.FB & !

1s3.FB & !sl.FB &

Clk):

s0.FB
1s0.FB & iStrb & !Ein); "

s3.FB & s2.FB & s1.FB
s3.FB & !s2.FB &

Clk):

s3.FB & s2.FB & sl.
s3.FB & !s2.FB &
!s3.FB & s2.FB &
1s3.FB & s2.FB &

Clk)

(!s3.FB & !sl.FB &
s3.FB & Din

1s3.FB &
(Clk);

(s3.FB
s2.FB &

!s2.FB

1s1.FB

's0.FB); " ISTYPE 'BUFFER’

FB

s0.FB

!s1.FB & sO0.FB

1s1.FB & !iStrb); " ISTYPE

!sO.FB

& !sl.FB & !Par); " ISTYPE

1s1.FB & s0.FB); " ISTYPE ’'BUFFER’

(Clk);

(s3.FB
1s2.FB &

'sl.FB

1s1.FB & s0.FB); " ISTYPE ’'BUFFER’

(Clk);

ISTYPE ’‘'BUFFER’

'BUFFER’

'BUFFER’

Figure 197. Control State Machine Summary Information.

271

==== P18CV8 Chip Diagram ====
P18CV8
Hommmm o \ [=mmm———-

\ /

Clk 1 20

Din 2 19

3 18

4 17

5 16

6 15

7 14

Ein 8 13

Par 9 12

GND 10 11

==== P18CV8 Resource Allocations ====
Device Resource Design
Resources Available Requirement Uti

Dedicated input pins 10 5
Combinatorial inputs 10 5
Registered inputs - 0
Dedicated output pins - 7
Bidirectional pins 8 1
Combinatorial outputs - 1
Registered outputs - 7
Reg/Com outputs 8 -
Two-input XOR - 0
Buried nodes - 0
Buried registers - 0
Buried combinatorials - 0

Vece
s0

sl

s2

s3
istrb
out
Ackn
busy

Strb

Part
lization

Unused

Figure 197. Control State Machine Summary Information. (continued)

272

==== P18CV8 Product Terms Distribution ====

Terms

Signal Pin Terms Terms
Name Assigned Used Max Unused

iStrb 15 1 8 7
s3.REG 16 3 8 5
s2 .REG 17 4 8 4
s1.REG 18 2 8 6
s0.REG 19 4 8 4
out.REG 14 3 8 5
busy.REG 12 3 8 5
Ackn.REG 13 3 8 5

==== List of Inputs/Feedbacks ====
Signal Name Pin Pin Type
Clk 1 CLK/IN
Strb 11 INPUT
isStrb 15 BIDIR
Ein 8 INPUT
Din 2 INPUT
Par 9 INPUT

==== P18CV8 Unused Resources ====

Pin Pin Product Flip—flop

Number Type Terms Type

3 INPUT - -

4 INPUT - -

5 INPUT - -

6 INPUT . -

7 INPUT - -

Figure 197. Control State Machine Summary Information. (continued)

273

3. Eight-to-One Multiplexer

Information regarding the eight-to-one multiplexer is included in Figure 198.

Eight to One Multiplexer
==== P18CV8 Programmed Logic ====

out = (s0 & !sl & !s2 & a0

s0 & s1 & !s2 & al
s0 & sl & s2 & a2

1s0 & s1 & 82 & a3
1s0 & s1 & !s2 & a4
1sO & !'sl & !s2 & a5
1s0 & 1sl & s2 & ab
s0O & !sl & s2 & a7);

£ R S

nClk = (I!Clk);

==== P18CV8 Chip Diagram ====

tmmm— - \ [==—————— +
\ /
. 20 Vece

a0 2 19

al 3 18

a2 4 , 17

a3 5 16 nClk
a4 6 15 out
as ? 14 s2
a6 8 13 sl
a7 | 9 12 s0
GND | 10 11 Clk

Figure 198. Eight-to-One Multiplexer Summary Information.

274

Device Resource Design Part
Resources Available Requirement Utilization Unused

Dedicated input pins 10 12 9 1 (10 %)
Combinatorial inputs 10 9 1 (10 %)
Registered inputs - 0 - -
Dedicated output pins - 2 - -
Bidirectional pins 8 0 5 3 (37 %)
Combinatorial outputs - 2

Registered outputs - 0 - -
Reg/Com outputs 8 - 2 6 (75 %)
Two-input XOR - 0 -

Buried nodes - 0 - -

Buried registers - 0 - -

Buried combinatorials - 0 - -

Signal | Pin | Terms | Terms | Terms
Name | Assigned | Used | Max | Unused
out | 15 | 8 | 8 | 0
nClk [16 [1 | 8 | 7
==== List of Inputs/Feedbacks ====
Signal Name Pin Pin Type
s0 12 BIDIR
sl 13 BIDIR
s2 14 BIDIR
a0 2 INPUT
al 3 INPUT
a2 4 INPUT
a3 5 INPUT
a4 6 INPUT
a5 7 INPUT
ab 8 INPUT
a7 9 INPUT
Clk 11 INPUT
==== P18CV8 Unused Resources ====
pin | Pin | Product | Flip-flop

Number | Type | Terms | Type

17 | BIDIR | NORMAL 8 [D

18 | BIDIR | NORMAL 8 [D

| - BIDIR | NORMAL 8 I D

Figure 198. Eight-to-One Multiplexer Summary Information. (continued)

275

276

APPENDIX G. COMMAND TRANSMISSION PROGRAM

The Parallel Port Data Modulator provides a means to convert command bytes from
a computer parallel port to the required serial bit stream. A software interface is needed to
place the bytes on the parallel port for the command modulator to read. C++ was used to
write such an interface.
| A. PARALLEL PORT COMMAND TRANSMISSION

The command transmission program accepts byte values from the user and plabes
those bytes onto the parallel port.‘ The program checks to determine if the peripheral is busy
before placing the command on the port. If the port remains busy for an extended period,
the program notifies the user. After placing the command on the parallel poﬁ, the
t£ansnﬁssion interface checks for modulator acknowledgement. Once acknowledgement is
received or a wait period expires, the program prompts the user for the next command byte.

The source code for the test program is provided in Figure 199.

277

//**

// Program: parallel.cpp

// Name: Jeff Link

/7

// Parallel Command Transmitter, ver 1.2
// Operating Environment: DOS

// Compiler: Borland C++ ver 5.02

// Date: 10 March 1999

//

// Description: This program issues user entered command bytes to the

// parallel port and waits for the command to be acknowledged. The
// program is a driver for the Parallel Port Data Modulator developed
// in conjunction with the Tactor Interface Chip research project.

//**'k***********

#include <iostream.h>;
#include <dos.h>;

int getvalue();

void main(void) {
cout << "Parallel Command Transmitter, ver 1.2" << endl;
cout << "Jeff Link (c¢) 1999 All rights reserved.\n" << endl;
int *portlist = (int *)0x408;
int lptldata = *portlist;
int lptlstat=lptldata+l;
int lptlcont=lptldata+2;
cout << "LPT1 detected at " << lptldata << endl:;
int val,ii,resp;
while((val=getValue())<256 && val>-1) {
1i=0; // this loop waits if port is busy
while ((resp=(inportb(lptlstat)&0x80))==0 && ii <= 1000) {
if (ii%100==0) ’
cout << "Parallel port is busy for " << ii << " cycles." << endl;
++1ii;
}
if (xesp != 0) {

outportb(lptlidata,val); // put data on port
outportb(lptlcont, 0x01) ; // send strxrobe signal
ii=0; // this loop waits for acknowledgement

while ((resp=inportb{lptlstat)&0x40)==0 && ii <='1000) {
if (1i%100==0)

cout << "Waiting " << ii << " cycles for acknowledgement.” << endl;

++13;
}
outportb(lptlcont, 0x00) ; // clear strobe signal
if (resp == 0)
cout << "No data acknowledgement received." << endl;
}

else
cout << "Command transmission aborted; no data sent." << endl;

}

int getvalue() {
int val;
cout << "Enter value for BYTE to send (>255 quits): ";
cin >> val;
return val;

}

Figure 199. Command Transmission Driver C++ source code.
278

APPENDIX H. GOMAC CONFERENCE PAPER

The research presented in this thesis was also published and presented at the 1999
Government Microcircuit Applications Conference. The four-page article, Reference 2, is

included as Figure 200, Figure 201, Figure 202, and Figure 203.

279

A BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS

JetTrey P. Link and Douglas 1. Fouts
LS. Naval Postgraduate School
Monterey, CA Y3943

ABSTRACT

Implementation ol tactile communication requires rapid
parametric date transfer along a common bus. The
developed communication protocol and application-specific
interface chip enable precise control of multiple tactors o
convey information to military users.

INTRODUCTION

Touch is a physical sensory input sot commonly associated
with conveying computer information. Yet. when a person
is touched. the response is immediate and often involuntary.
The immediate nature of touch response makes it ideal for
communicating critical information. Tactile communication
cun also be the most appropriate interface for specific types
of information when existing visual and auditory activitics
cannot be compromised,

arch Laboratory huilt &

The Naval Acrospace Medical Res
rudimentary implementation of tactile communication in
their Tactile Situation Awareness Syvstem (TSAS). To
refine this imerface. the Naval Postgraduate School
developed a compact communication topology for
connecting cach Lactile transmitter (tactor) to the controlling
microprocessor. Scrial communications were selected for
this application 1o minimize the number of conductors
required for data transter,

An application-specific Tactor Interface Chip (T1C)
provides the necessary hardware o realize the serial
communication scheme. Each tactor in a forty-clement
array will include « TIC. as shown in Figure 1. that controls
tactor activition. This hardware combination {orms an
“intelligent tactor” that shifts waveform creation from the

~ d-wire
harness

interface chip

! b
i tactor *
|

Figure 1. The Tactor Interface Chip (TIC) embedded in the
casing of each tctle transmitter (tactor) controls
application-of power for wavetorm generation.

microprocessor 1o the individual tactors. The resulting
decreuse in computational load allows use of a slower
microprocessor, decreasing system powcer consumption.

COMPETING DESIGN CONSTRAINTS

SIZE: Funding limits forced microchip size to be a primary
constraint. Since component interconnections consume the
majority of VLSI layout areal”l| chip size primarily bounds
the number of circuit components. This sharply fimits
circuit complexity and fundamentally affected design
decisions.

POWER: Since the tactile interface is a stand-alone bridge
between the information source and the human user, cach
TIC must draw minimum current from the battery-powered
system. Using the smallest possible CMOS FETs
throughout the circuit minimizes power consumption of the
clementary components. Aggressively simplifying the logic
structure further reduced power requirements.

SPEED: Small transistor size adversely influences response
time. Minimum transistor size is sufficient at a 1 Mliz
clock speed unless long interconnects or several components
must be driven. Individual clements were resized based on
their output loading.

CONTROL STRUCTURE

ADDRESS: Transmission of tactile messages requires each
tactor in the forty-clement array 1o be capable of producing
detined pulse shapes. These tactilc signals can be
independent or synchronized with several other tactors.
Since the pulse shape parameters are transmitied on a
common data bus, cach TIC must be able to recognize
commuands meant to control the attached tactor. Unigue
identification is accomplished by assigning an "address” 10
cach TIC. Use of a single TIC design for all tactors is
possible by externally setting the address parameter by
grounding TIC input pins. Planned modifications to this
design are discussed in the "Future Improvements” section
of this paper.

PULSE SHAPE: Tactors are repeatedly pulsed to convey
information to the user. Changing the pulse duration and
pulse rate creates difterent physical sensations and can be
used to relate differing messages. Coordinated pulse shapes
on adjacent tactors can produce an itlusion of motion to
relite additional information. Pulse shape production
requires two parameters. pulse width and repetition period.
illustrated in Figure 2. The TIC stores these values in duta
registers that are'used to control tactor activation.

Figure 200. GOMAC Conference Paper (page 1 of 4).

280

}e——— pulse width ——-}{

bipolar tactor tactor
activation tdle

K————-—— repetition period ——————3;

Figure 2. Tactor activation is controlied by the pulse width

and repetition period values that are stored on the TIC.

COMMUNICATION PROTOCOL

An cight-bit communication scheme is utilized to ensure
casy integration to different micro-controllers. The data
words represent address. pulse width, and repetition period
commands as summarized in Table 1. The Universal

Word Format | Meaning '
i

OXXXXXXX | 7-bit Address

FOXXXXXX | 6-bit Pulse Width

I Ixxxxxx | 6-bit Repetition Period

Table 1. Format of the three command (ypes allows rapid
address comparison and pulse-shape parameter storage.

Synchronous/Asynchronous Reeciver-Transmitter (USART)
data format is used to package the command bytes o a
serial bit stream that can be easily detected. The packet is
illustrated in Figure 3 and includes a start bit, eight data bits.
a parity bit and a stop bit. Thix data package format also
provides basic fault protection. The data line remains at a
logic "1" while idle.

] 0] X X AN A \ Y A Y p 1

l start 8 datu bits parity stop

i

Figure 3. Standard USART format provides a discemnible
package and basic error detection,

OPERATIONAL DESCRIPTION

The TIC continuously monitors the serial data bus and -

decodes the bit stream to deteet and latch command bytes
onto an internal command bus. When the bytes are latched.
a daw-valid signal triggers command cvaluation and
subsequent control of the TIC operational state. The state
diagram in Figure 4 iltustrates the T1C operating sequence.

Initially, the TIC is in a monitor state waiting to receive a
valid address. When an appropriate address is received. the
TIC shifts (o a condition that waits for a command to sct the
register values. When a register command is received. the
TIC enters a state that responds 1o all register communds
until an address is detected. marking the end of the
commund cyele. This operating scquence provides easy

Regster Command Received Valid Address Recerved

1 : 3 comnand receved

{
Figure 4. The Operating Sequence ensurcs that cuch TIC
only responds Lo properly addresses commands.

control and allows the identical command 10 be sent 10
several tactors simultancously.

I the stored pulse width is non-zero, the TIC activates the
attached tctor in a pattern defined by the stored values of
pulse width and repetition period. Any change to either
wavelorm parameter will cause the THC w0 resct the wave
counter. synchronizing all ‘tactors that simultancously
receive the command.

FUNCTIONAL COMPONENTS

TIC design focused on three areas: detecting and latching
serial commands onto the command bus, interpreting
commands to set the activation parameters, and generating
bipolar current to drive the attached tactor. Each functional

“arca was designed to operate independently with well-

defined inputs and ouwtputs. This modular approach was
critical to the design and testing of lower-level components.

SERIAL DATA RECEIVER. The Serial Data Recciver
tFigure 5) continuously monitors the input data line to
detect and Jatch transmitted packets onto the command bus.
It consists of a twelve-bit shift register, a validity checker,
and an eight-bit latch. The most recent twelve data bits are
stored in the shift register and compared to the USART
format rules. When a string of bits is detected that mects the
validity check. the command byte of the data packet is
laiched onto the command bus. The latch signal also
wrigeers a "Bus Data Valid” signal that enables the command
decoder. A feedback path partially clears the shift register
to ensure that two immediately sequential data packets do
not produce an erroncous command detection.

Figure 201. GOMAC Conference Paper (page 2 of 4).

281

Serial Data Receiver f

i

<

—»] 12 bit lupat $hft Regretas ia— sl H

L B i

\ :

LR i H

: [.
i N Vatudity Chock 1

' Bus But Ve

Figure 5. The Serial Dara Recciver extracts the ¥-bit
commands from the serial command stream.

COMMAND DECODER AND CONTROLLER. The
Command Decoder and Controller (Figure 6) evaluates the
received commands and adjusts the internally - stored
waveform parameters i the command is properly addressed
to the anached tactor. H consists of a4 sequence controller,
address comparitor. and two six-bit registers. The sequence
controller is a state machine (refer o Figure 43 that causes
the TIC 1o react only to properly addressed commands. The
address reference maintins @ unique address for the
individual tactor. The TIC ignores all received communds
until the address comparitor detects its assigned address (or
the "all call” address). [t then updates the stored pulse width
ster commanid.

and repetiion period with every new reg
Then, when an address ix received, the TIC returns to a
aits for the next property addressed

maonitor condition and w
command.

[T

i Command Decoder and Controller !

i I

: ! Address | . i H

1 | Compariter i | t

i It Fl

| “,\.'umf Adtteuns i

Command ;

Seguence 4

Controlier R H

| atrrencn i

i

Puise Wiaeh | i

; Hegister !

|
| ;

| t

Figure 6. The Command Decoder and Controller interprets
conumands and updates register values as appropriate.

TACTOR POWER CONTROLLER. The Tactor Power
Controller (Figure 7) converts the input data signals into
pulsed bipolar power that is applied directly o the wetor. A
frequency divider reduces the 1 MHz clock Lo u sclectable
tactor oscillating frequeney and a 62,3 Hz down counter
The oscillator Trequency is applied o the power

clock.

oscillator 1© produce alternating current for the tactor. The
power controfler uses two synchronized down counters to
create the stored wave shape by activating and disabling the
power oscillator output. The control logic produces the
wave cvele by clearing and loading both down counters
hased on the down counter conditions and the "enable
output” signal.

; Tactor Power Controller

! . th Eouie g Fne
: I Rer, Qutput | Re
H h Y
i
' Pulse Widih Repetition Periodt |
Down Counter Down Countar J
[x X T
(ipd oo [E25H2]
t Divider o
i H Wy Cirart Lonet
| ;:‘3‘0 l:,;' Groarer |
; §Than 3 |
i Powsr r* H
H Controt !
H Bi-polar Logie
Power
Oscillatnr
Tactor

Figure 7. The Tactor Power Controtler applics power to the
actor based on stored wave-shape parameters.

SPECIAL DESIGN FEATURES

Several features of the current design provide cnhanced
system performance. Some features are included primarily
for chip testing and evaluation.

MULTIPLE COMMAND PACKET ADDRESSING. The
operating-state transition definitions allow a command byte
stream that includes multiple TIC addresses. This [cature
allows a command fo activate several tactors with a single.
syichronized wave-shape.

ALL-CALL ADDRESS. Onc address value is reserved to
represent valid address for all TICs. This feature is
intended for use with a system reset command or when
testing the entire communication array.

DUAL RESET CIRCUIT. The andlog response of the
circuit components is used o produce an initial reset signal
for the first 200 nS of TIC operation. The reset ensures that
all components establish a known condition when the circuit
is started. A selectable. low-voltage reset is included 10
protect the system from an erratic response caused by low
input voltage.

SELECTABLE OSCILLATOR FREQUENCY. An input
jumper provides two tactor oscillation frequencies: [25 Hz,
and 250 Hz. This feature allows the TIC to be used with
difterent tactors during prototype evaluation.

SELECTABLE ADDRESS. By including the TIC address
as an externdl input. a single TIC design is used for all
tactors in the communication array. In addition to
enhancing prototype testing, this approach will be retained
in future versions to ensure that a single "intelligent tactor”
cun function in every possible array position,

Figure 202. GOMAC Conference Paper (page 3 of 4).

282

FUTURE IMPROVEMENTS

PROGRAMMABLE ADDRESSES. Use of programmable-
gutes will allow the TIC address w be electronically
assigned. Additionally. multiple address registers may be
included to allow issuing TIC commands to groups of
tactors simultancously using a single address.

PROGRAMMABLE OSCILLATION FREQ[V.’E;\’CY.
Adding a Ircqueney register would atlow the TIC to vary the
tactor activation {requency.” This could be implemented
cither through an external jumper setting or as an additional

command.

PROGRAMMABLE VOLTAGE SHAPING. Currently the
tactor voltage is applicd in a bipolar square wave. Tactor
response may vary noticeably when a sine wave is used to
drive the tactor, Use of a varying voltage would also reduce
the switching transients created by the square-wave current
spikes.

EXPANDED INSTRUCTION SET. Many additional
instructions could be included in the basic TIC control
language. This chunge requires restructuring the command
protocol and making significant changes to the TIC design.
Including a programmable micro-code register into the
system would provide the most flexible solution. However.
this approach is not a priority due o ity huge increase in
circuit complexity and required layout area.

TWO-WAY COMMUNICATIONS. A change o the
fundamentat system paradigm might incorporate the ability
for real-time feedback to the controller. The status data

could include all current TIC paramcters. Incorporating an .

onboard vibration sensor could also provide actual
indication of tactor operating paranieters.

PROJECT STATUS

The TIC is completely designed and simulated using
Cadence VLSI design software. Exhaustive simulation
shows that the system operates precisely as designed. The
circuit performed Mawlessly at speeds up to 5 MHz.

The National Science Foundation VLSI design program
facilitated TIC fabrication through the MOSISH! service.
MOSIS provides low-cost prototyping and production
service for VLSI circuit development.

Initial chip testing produced no detectable output. Visual
examination of the chip showed arcas of possible
contamination during the fabrication process. Subsequent
chip cvaluation with a scanning electron microscope
revealed contamination between power lines and between
data paths (Figure 8). Figure 9 shows aluminum oxidation
detected along some of the conductors. Further-evaluation
is in progress o precisely identify the faults in each chip.

SUMMARY

Tactile communication is an cxuemely viable method of

conveying information without impeding other sensory

Figure 8. Scanning Electron Microscope images of possible
power shorts (left) and command-bus shorts (right).

Figure 9. Scanning Electron Microscope images of arcas
with sluminum oxidation.

inputs. In many applications. tactile messages may be most
appropriate due to their intuitive and covert nature.

Previously, tactile communication has been experimental
and limited, lacking methods to take the technology beyond
the laboratory. The Naval Postgraduate School has
developed 4 communication protocol and a tactor interface
chip that will advance tactile communication beyond its
current academic environment.

Implementation of this concept is currently awaiting VLSI
fabrication. As more funding becomes available. many
improvements are planned for the next gencration of Tactor
Interface Chips. The Naval Postgraduate School is anxious
1o advance this tcchnology for military and public
applications.

REFERENCES

|11 Hong Z. Tan and Alex Pentland, "Tactual Displays For
Wearable Computing”. Proceedings of the First
Internationul Symposium on Wearable Computers,
IEEE. pp. 84-89, 1997.

[2] Neil H.E. Weste and Kamran Eshraghian, Principles of
CMOS VLS Design, Addison-Wesley, 1993.

[3] hup://www.mosis.org/

Figure 203. GOMAC Conference Paper (page 4 of 4).

283

284

10.

LIST OF REFERENCES

| Jan Axelson, Parallel Port Complete, Lakeview Research, 1996.

Jeffrey P. Link and Douglas J. Fouts, “A Bus Interface Chip for Tactile
Communications,” Digest of Papers for the 1999 Government Microcircuit
Applications Conference, pp. 460-463, March 1999.

Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, Digital Logic
Circuit Analysis and Design, Prentice Hall, 1995.

H. Tan and A. Pentland, “Tactual Displays For Wearable Computing,” Proceedings
of the First International Symposium on Wearable Computers, IEEE, pp. 84-89,
1997.

David Pellerin and Michael Holley, Digital Design using ABEL™,PTR Prentice‘
Hall, 1994.

Donald E. Thomas and Philip R. Moorby, The Verilog@ Hardware Description
Language, 3™ edition, Kluwer Academic, 1996.

Paul W. Tuinenga, SPICE: A Guide to Circuit Simulation & Analysis Using
PSpice®, Prentice Hall, 1988.

John F. Wakerly, Digital Design: Principles and Practices, 2™ edition, Prentice
Hall, 1994.

Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design: A
Systems Perspecitve, 2™ edition, Addison-Wesley, 1993.

M. Zlotnik, “Applying Electro-Tactile Display Technology to Fighter Aircraft --
Flying With Feeling Again,” Proceedings of the National Aerospace and
Electronics Conference, IEEE, pp. 191-197, 1988.

285

286

INITIAL DISTRIBUTION LIST

Defense Technical Information Center........ovveeurerreeervvereverenoans

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library.........ccocouenmrerineenneeesnsisisnsesesiesssensnens

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

RADM Robert C. Chaplin, USNcccocoveiriienrenenrnnennninnenens

Naval Postgraduate School
1 University Circle
Monterey, CA 93943

Chairman, Code EC ... reeeeereeeeriecreeresessnsseesesssessnssessenss

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Professor Douglas J. Fouts, Code EC/Fs.......cooveinmeienienniecnnee

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Professor Jon T. Butler, Code EC/BUccoeeieevereerceerenencienesense

Department of Electrical and Computer Engmeermg
Naval Postgraduate School
Monterey, CA 93943-5121

Angus H. Rupert, M.D., Ph.D ...

CDR, Navy Medical Corps

Naval Aerospace Medical Research Laboratory
51 Hovey Road

NAS Pensacols, FL 32504

LCDR Jeffrey P. LinK......ccovcoieieerniiniriieiinreereensnsiesissesenennne

11808 Mallard Rd.
Mason Neck, VA 22079-4111

287

No. Copies

